19th FRUCT Conference

Methods for TSVs placement in 3D Network-on-chip

Lev Kurbanov, Nadezhda Matveeva, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation \{lev.kurbanov, nadezhda.matveeva\}@guap.ru,
suvorova@aanet.ru

Outline

1. Introduction
2. Problems of 3D NoC design
3. Placement TSV nodes on the dies with the same topologies
4. Placement TSV nodes on the dies with the different topologies

Network-on-Chip (NoC) - a communication subsystem between intellectual property (IP) cores in the System-on-Chip (SoC)

NoC includes:

- Terminal nodes (IP cores)
- Switch nodes
- Interconnect

Introduction Difference between 2D and 3D NoC 2D

Outline

1. Introduction
2. Problems of 3D NoC design
3. Placement TSV nodes on the dies with the same topologies
4. Placement TSV nodes on the dies with
the different topologies

Problems of 3D NoC design

Modern 3D NoC development is complex task

Developer has to solve different problems:

- IP blocks placement on the die
- Energy consumption limitation
- System performance improvement
- Organization of vertical links between dies in the 3D stack (TSV placement)

TSV placement problems

TSV placement problems

- TSVs heat dissipation

TSV placement problems

A die

- TSVs heat dissipation

Design

problems

TSV placement problems

A die

- TSVs heat dissipation Problem:
Overheating at full connection dies

problems

- TSVs heat dissipation

Problem:
Overheating at full connection dies

Solution:
Partial dies
connection

TSV placement problems
A die

Switch A1	Switch A2	Switch A3	Switch A4	Switch A5	Switch A6	Switch A7
Switch B1	Switch B2	Switch B3	Switch B4	Switch B5	Switch B6	Switch B7

problems

- TSVs heat dissipation

Problem:

Overheating at full connection dies

Solution:
Partial dies
connection

TSV placement problems
A die

Switch A1	Switch A2	Switch A3	Switch A4	Switch A5	Switch A6	Switch A7
Switch B1	Switch B2	Switch B3	Switch B4	Switch B5	Switch B6	Switch B7

- Bottleneck in data transfer from die to die

problems

- TSVs heat dissipation

Problem:

Overheating at full connection dies

Solution:

Partial dies
connection

TSV placement problems
A die

B die

- Bottleneck in data transfer from die to die

Problem:
Some TSVs are overloaded Some TSVs are underloaded

problems

- TSVs heat dissipation

Problem:

Overheating at full connection dies

Solution:

Partial dies
connection

TSV placement problems
A die

B die

- Bottleneck in data transfer from die to die

Problem:
Some TSVs are overloaded Some TSVs are underloaded

Solution:
The uniform attachment of nodes to each TSV

- The problem of placement specific nodes (P nodes), such that for each pair of nodes the Chebyshev distance is not less than H and the number of attached nodes should be near equal among regions
- Chebyshev distance (H) is the maximal absolute componentwise difference

$$
\mathrm{H}(\vec{x}, \vec{y})=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

- Necessary condition: $\mathrm{V}=\mathrm{V}_{\mathrm{P}} \cup \mathrm{V}_{\text {Att }}$
, where V_{P} - set of medians,
$\mathrm{V}_{\text {Att }}$ - set of attached nodes,
V - set of all nodes in the graph
- The problem of placement specific nodes (P nodes), such that for each pair of nodes the Chebyshev distance is not less than H and the number of attached nodes should be near equal among regions
- Chebyshev distance (H) is the maximal absolute componentwise difference

$$
\mathrm{H}(\vec{x}, \vec{y})=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

- Necessary condition: $\mathrm{V}=\mathrm{V}_{\mathrm{P}} \cup \mathrm{V}_{\text {Att }}$, where V_{P} - set of medians,

	1	2	3	4	5	6	7
1	4	4	4	4	4	4	4
2	3	3	3	3	3	3	4
3	2	2	2	2	2	3	4
4	2	1	1	1	2	3	4
5	2	1	TSV	1	2	3	4
6	2	1	1	1	2	3	4
7	2	2	2	2	2	3	4

$\mathrm{V}_{\text {Att }}$ - set of attached nodes,
V - set of all nodes in the graph

- The problem of placement specific nodes (P nodes), such that for each pair of nodes the Chebyshev distance is not less than H and the number of attached nodes should be near equal among regions
- Chebyshev distance (H) is the maximal absolute componentwise difference

$$
\mathrm{H}(\vec{x}, \vec{y})=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

- Necessary condition: $\mathrm{V}=\mathrm{V}_{\mathrm{P}} \cup \mathrm{V}_{\text {Att }}$, where V_{P} - set of medians,

$\mathrm{V}_{\text {Att }}$ - set of attached nodes,
V - set of all nodes in the graph

Outline

1. Introduction
2. Problems of 3D NoC design
3. Placement TSV nodes on the dies with the same topologies
4. Placement TSV nodes on the dies with
the different topologies

Placement TSV nodes on the dies with the same topologies

Problem: Find the location of P TSVs on the die

Goal: Connect the dies in 3D stack without overheating and to provide the maximal uniform loading of connections between the dies

Input data:

- Topology
- Number of TSVs (P)
- Distance between TSVs (H)

Die 2
Mesh

Output data:

- Set of solutions with locations of P TSVs

Same topologies

Criteria for choosing best solution on the die

The following criteria are applied when we choose best solution on the die:

- Distance [D, hops] - the maximal distance between TSV node and the farthest node in it's flat region among all TSV nodes:

$$
\mathrm{D}=\max _{i=1}^{P}\left(\max _{v_{i}} \mathrm{~d}\left(\mathrm{~m}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)\right)
$$

Where
$\mathrm{d}($.$) - shortest distance between two nodes$
P - the number of TSVs
v_{i} - node in $i^{\text {th }}$ flat region
$m_{i}-$ TSV node in $i^{\text {th }}$ flat region

- Difference of TSVs load [Δ, Number nodes] - maximal absolute difference of nodes count among all pairs of flat regions:

| $\Delta=\max _{i \neq j}\left\|n_{i}-n_{j}\right\|$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

Placement algorithm (1/4)

It is necessary to place two TSVs ($\mathrm{P}=2$) in a $3 \times 3 \mathrm{NoC}$ with Mesh topology, and achieve a minimal distance from the TSV node to other nodes, achieve the maximal uniform attachment of nodes.

1. Building a matrix of shortest distances.

	A	B	C	D	E	F	G	H	I
A	0	1	2	1	2	3	2	3	4
B	1	0	1	2	1	2	3	2	3
C	2	1	0	3	2	1	4	3	2
D	1	2	3	0	1	2	1	2	3
E	2	1	2	1	0	1	2	1	2
F	3	2	1	2	1	0	3	2	1
G	2	3	4	1	2	3	0	1	2
H	3	2	3	2	1	2	1	0	1
I	4	3	2	3	2	1	2	1	0

Input data:

- Mesh 3x3
- $\mathrm{P}=2$

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by ascending distance. The index shows the distance from median to nodes in the row.

3. We choose two rows (since $\mathrm{P}=2$) and remove from these rows median nodes. In this step, median nodes are H and B

A	A_{0}	$\mathrm{~B}_{1}$	D_{1}	C_{2}	E_{2}	G_{2}	$\mathrm{~F}_{3}$	H_{3}	I_{4}
B	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	C_{1}	E_{1}	D_{2}	$\mathrm{~F}_{2}$	H_{2}	G_{3}	I_{3}
C	C_{0}	$\mathrm{~B}_{1}$	$\mathrm{~F}_{1}$	$\mathrm{~A}_{2}$	E_{2}	I_{2}	D_{3}	H_{3}	G_{4}
D	D_{0}	$\mathrm{~A}_{1}$	E_{1}	G_{1}	$\mathrm{~B}_{2}$	$\mathrm{~F}_{2}$	H_{2}	C_{3}	I_{3}
E	E_{0}	$\mathrm{~B}_{1}$	D_{1}	$\mathrm{~F}_{1}$	H_{1}	$\mathrm{~A}_{2}$	C_{2}	G_{2}	I_{2}
F	$\mathrm{~F}_{0}$	C_{1}	E_{1}	I_{1}	$\mathrm{~B}_{2}$	D_{2}	H_{2}	$\mathrm{~A}_{3}$	G_{3}
G	G_{0}	D_{1}	H_{1}	$\mathrm{~A}_{2}$	E_{2}	I_{2}	$\mathrm{~B}_{3}$	$\mathrm{~F}_{3}$	C_{4}
H	H_{0}	E_{1}	G_{1}	I_{1}	$\mathrm{~B}_{2}$	D_{2}	$\mathrm{~F}_{2}$	$\mathrm{~A}_{3}$	C_{3}
I	I_{0}	$\mathrm{~F}_{1}$	H_{1}	C_{2}	E_{2}	G_{2}	$\mathrm{~B}_{3}$	D_{3}	$\mathrm{~A}_{4}$

Same

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by ascending distance. The index shows the distance from median to nodes in the row.

3. We choose two rows (since $\mathrm{P}=2$) and remove from these rows median nodes. In this step, median nodes are H and B

Potential medians

A	A_{0}	$\mathrm{~B}_{1}$	D_{1}	C_{2}	E_{2}	G_{2}	$\mathrm{~F}_{3}$	H_{3}	I_{4}
B	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	C_{1}	E_{1}	D_{2}	$\mathrm{~F}_{2}$	H_{2}	G_{3}	I_{3}
C	C_{0}	$\mathrm{~B}_{1}$	$\mathrm{~F}_{1}$	$\mathrm{~A}_{2}$	E_{2}	I_{2}	D_{3}	H_{3}	G_{4}
D	D_{0}	$\mathrm{~A}_{1}$	E_{1}	G_{1}	$\mathrm{~B}_{2}$	$\mathrm{~F}_{2}$	H_{2}	C_{3}	I_{3}
E	E_{0}	$\mathrm{~B}_{1}$	D_{1}	$\mathrm{~F}_{1}$	H_{1}	$\mathrm{~A}_{2}$	C_{2}	G_{2}	I_{2}
F	F_{0}	C_{1}	E_{1}	I_{1}	$\mathrm{~B}_{2}$	D_{2}	H_{2}	$\mathrm{~A}_{3}$	G_{3}
G	G_{0}	D_{1}	H_{1}	$\mathrm{~A}_{2}$	E_{2}	I_{2}	$\mathrm{~B}_{3}$	$\mathrm{~F}_{3}$	C_{4}
H	H_{0}	E_{1}	G_{1}	I_{1}	$\mathrm{~B}_{2}$	D_{2}	$\mathrm{~F}_{2}$	$\mathrm{~A}_{3}$	C_{3}
I	I_{0}	$\mathrm{~F}_{1}$	H_{1}	C_{2}	E_{2}	G_{2}	$\mathrm{~B}_{3}$	D_{3}	$\mathrm{~A}_{4}$

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by ascending distance. The index shows the distance from median to nodes in the row.

3. We choose two rows (since $\mathrm{P}=2$) and remove from these rows median nodes. In this step, median nodes are H and B

Same

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by ascending distance. The index shows the distance from median to nodes in the row.

3. We choose two rows (since $\mathrm{P}=2$) and remove from these rows median nodes. In this step, median nodes are H and B

Same

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by ascending distance. The index shows the distance from median to nodes in the row.

3. We choose two rows (since $\mathrm{P}=2$) and remove from these rows median nodes. In this step, median nodes are H and B

Same topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are attached and the distance to them in ascending order.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

5. We select connection to p-median with the minimal distance for each node. From the resulting table you can uniquely identify nodes that can be attached to only one median.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

Same

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are attached and the distance to them in ascending order.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

5. We select connection to p-median with the minimal distance for each node. From the resulting table you can uniquely identify nodes that can be attached to only one median.

Attachable nodes	A	C	E	G	I	D	F	A/	C	G/	I
Medians	B	B	B,H	H	H	B,H	B,H	H	4	3	B
Distance	1	1	1	1	1	2	2	3	3	3	3

Same topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are attached and the distance to them in ascending order.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

5. We select connection to p-median with the minimal distance for each node. From the resulting table you can uniquely identify nodes that can be attached to only one median.

Attachable nodes	A	C	E	G	I	D	F
Medians	B	B	B,H	H	H	B,H	B,H
Distance	1	1	1	1	1	2	2

Same

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are attached and the distance to them in ascending order.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

5. We select connection to p-median with the minimal distance for each node. From the resulting table you can uniquely identify nodes that can be attached to only one median.

Attachable nodes	A	C	E	G	I	D	F
Medians	B	B	B,H	H	H	B,H	B,H
Distance	1	1	1	1	1	2	2

Same

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are attached and the distance to them in ascending order.

Attachable nodes	A	C	E	G	I	D	F	A	C	G	I
Medians	B	B	B,H	H	H	B,H	B,H	H	H	B	B
Distance	1	1	1	1	1	2	2	3	3	3	3

5. We select connection to p-median with the minimal distance for each node. From the resulting table you can uniquely identify nodes that can be attached to only one median.

Attachable nodes	E	D	F
Medians	B,H	B,H	B,H
Distance	1	2	2

Same

Placement algorithm (4/4)

6. Distribute remaining nodes on the medians with the maximal uniformly attachment

Attachable nodes	E	D	F
Medians	$\mathbf{B , H}$	$\mathbf{B , H}$	$\mathbf{B , H}$
Distance	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$

Solution checking:

- $V_{P} U V_{\text {Att }}=V$
- $\mathrm{H}=2$
- $D=\max \left(d\left(V_{p}, V_{A t t}\right)\right)=2$ hops
- $\Delta=1$ node

Outline

1. Introduction
2. Problems of 3 D NoC design
3. Placement TSV nodes on the dies with the same topologies
4. Placement TSV nodes on the dies with the different topologies

Different topologies

Placement TSV nodes on the dies with the different topologies

Problem: Find the location of p TSVs for dies with different topologies
Goal: Connect the dies in 3D stack without overheating and to provide the maximal uniform loading of connections between the dies

Input data:

- Topologies
- Number of TSVs (p)
- Distance between TSVs (H)

Die 2
Mesh

Output data:

- Set of solutions with locations of p TSVs

Different

 topologies
Network placement on the die

- Nodes must form a matrix

- Each node has three coordinates (X,Y,Z) Where X, Y - location on the die, Z - die number

Different topologies

Vertical regions

Vertical region - subgraph of the entire network, which consists of one node with TSV and nodes attached to it on each die

Red vertical region

Blue vertical region

Different

 topologies
Criteria for choosing best solution for full system

The following criteria are applied when we choose best solution for full system:

- Sum of diameters [SumD, hops] - the sum of diameters of all vertical regions:

- Difference of TSVs load [Δ_{VR}, Number nodes] - maximal absolute difference of nodes count among all pairs of vertical regions:

$\Delta_{V R}=\max _{i \neq j}\left\|n_{i}-n_{j}\right\|$,		
Where $n_{i}=\left\|\mathrm{V}_{\mathrm{i}}\right\|, n_{j}=\left\|\mathrm{V}_{\mathrm{j}}\right\|$ $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}-$ set of nodes in $\mathrm{i}^{\text {th }}$ and $j^{\text {th }}$ vertical region correspondingly	$\nabla^{s i n}$	

Different

topologies

Placement algorithm (1/4)

It is necessary to place two TSVs $(\mathrm{p}=2)$ in a 3×4 NoC for 2 dies with Mesh and Butterfly topology correspondently, and achieve minimal diameter and minimal load difference of vertical regions.

1. Find set of the best flat solutions for die using the previous algorithm

Die 2 Mesh

Die 1 Butterfly

Different

topologies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies. Create vertical regions for each solution

Solution 1 for Mesh

!

Solution 10 for Mesh

Mapping 1 from Mesh to Butterfly

!
Mapping 10 from Mesh to Butterfly

Different

topologies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies. Create vertical regions for each solution

Solution 1 for Mesh

:

Solution 10 for Mesh

Mapping 1 from Mesh to Butterfly

;
Mapping 10 from Mesh to Butterfly

Different

topologies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies. Create vertical regions for each solution

Solution 1 for Mesh

:

Solution 10 for Mesh

Mapping 1 from Mesh to Butterfly

$:$
Mapping 10 from Mesh to Butterfly

Different

Placement algorithm (3/4)
3. Evaluate each resulting solution by the sum diameters of vertical regions and load difference of TSVs
4. Add your resulting solutions to the solutions' set for a full system
5. Repeat Steps1-4 for all dies in the system

Die 2 Mesh

Die 1 Butterfly

Solution checking:

- $V=V_{P} \cup V_{\text {Att }}$

Different

topologies

Placement algorithm (4/4)

6. Filter the solutions' set by minimal sum diameters
7. Filter the remaining solutions' set by minimal difference load

Die 2 Mesh

Die 1 Butterfly

$D_{\text {red }}=6$ hops
$D_{\text {blue }}=5$ hops
$\left\lvert\, \begin{aligned} & \mid V_{\text {red }} \\ & \mid V_{\text {blue }}\end{aligned}=12\right.$ nodes $=12$ nodes \quad SumD $=11$

$\left.\begin{array}{l}\mathrm{D}_{\text {red }}=5 \text { hops } \\ \mathrm{D}_{\text {blue }}=5 \text { hops } \\ \mid \mathrm{V}_{\text {red }}=12 \text { nodes } \\ \left|\mathrm{V}_{\text {blue }}\right|=12 \text { nodes }\end{array}\right] \begin{aligned} & \text { SumD }=10 \\ & \Delta_{\text {VR }}=0\end{aligned}$

Different

topologies

Placement algorithm (4/4)

6. Filter the solutions' set by minimal sum diameters
7. Filter the remaining solutions' set by minimal difference load

Die 2 Mesh

Die 1 Butterfly

Different

Placement algorithm (4/4)
6. Filter the solutions' set by minimal sum diameters
7. Filter the remaining solutions' set by minimal difference load

Die 2 Mesh

Die 1 Butterfly

$\left.\begin{array}{l}D_{\text {red }}=6 \text { hops } \\ D_{\text {blue }}=5 \text { hops } \\ \left|V_{\text {red }}\right|=12 \text { nodes } \\ \mid V_{\text {blue }}=12 \text { nodes }\end{array}\right]$ SumD $=11$

Conclusion

The aforementioned algorithms solve the following three problems:

- How to place TSV in a 3D NoC?
- How to avoid TSV overheating?
- How to balance the load among TSVs?

	Method for same topologies	Method for different topologies
Applying	Homogeneous systems-on-chip	Heterogeneous systems-on-chip
Count of dies	Without limitations	Time consumption depends on a total die count. O(n $)$
Count of nodes on the die		≤ 100
Count of TSVs		≤ 5

Thank you for your attention!

Any questions?

Lev Kurbanov, Nadezhda Matveeva, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation
\{lev.kurbanov, nadezhda.matveeva\}@guap.ru, suvorova@aanet.ru

