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Introduction Network-on-Chip

Network-on-Chip (NoC) — a communication subsystem between
intellectual property (IP) cores in the System-on-Chip (SoC)

NoC includes:
« Terminal nodes (IP cores)
* Switch nodes

* Interconnect
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Introduction

Difference between 2D and 3D NoC
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Outline

2. Problems of 3D NoC design
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Design Problems of 3D NoC design

problems

Modern 3D NoC development is complex task

Developer has to solve different problems:

* |IP blocks placement on the die

* Energy consumption limitation

« System performance improvement

* Organization of vertical links between dies in the 3D

stack (TSV placement)
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Design

Sroblems TSV placement problems
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A TSV placement problems

 TSVs heat dissipation
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Design
Eroblems

TSV placement problems
A die

Switch A1 | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6 | Switch A7

 TSVs heat dissipation

Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6 | Switch B7

B die
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Design
problems

TSVs heat dissipation

Problem:

Overheating at full

connection dies

TSV placement problems
A die

Switch A1 | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6 | Switch A7
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A 1% S ad 1% SR - % SR o o9 SR o] o U o 1o SR 2oV PN
L2l L B 2 L2 3 2 L I 2V L% SR V] I SR 2V % SR V) P
Vi Vi VI VI VI VI VA
Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6 | Switch B7

B die
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Design
problems

TSV placement problems
A die

Switch Al | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6

 TSVs heat dissipation
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Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6

B die
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Design
problems

TSV placement problems
A die

Switch Al | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6

 TSVs heat dissipation
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connection dies

Solution:
Partial dies
connection
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Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6

B die

« Bottleneck in data transfer from die to die
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Design
problems

TSV placement problems
A die

Switch Al | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6 | Switch A7

 TSVs heat dissipation

Problem:

. = «~vli~r «~v i~ aad % «“~v i~
Overheating at full = == == == ==
connection dies = Il ] o IV PN

= bavd e =2 DA A N2
Solution: D] I == = ==
. . g L% S hd L% Al L% N <~~~
Partial dies
connection Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6 | Switch B7
B die
« Bottleneck in data transfer from die to die
Problem: %{/ - //
Some TSVs are overloaded ~——— N i
Some TSVs are underloaded
ad _
e = ,
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Design
problems

TSV placement problems
A die

Switch Al | Switch A2 | Switch A3 | Switch A4 | Switch A5 | Switch A6

 TSVs heat dissipation
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Problem:
Overheating at full
connection dies

§3 1
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Solution:
Partial dies
connection Switch B1 | Switch B2 | Switch B3 | Switch B4 | Switch B5 | Switch B6 | Switch B7
B die
 Bottleneck in data transfer from die to die
Problem: ? o %
8 =
Some TSVs are overloaded e bl
Some TSVs are underloaded
Solution:
The uniform attachment of nodes
to each TSV
L ad ad
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Design
problems

» The problem of placement specific @—»? A B — C
nodes (P nodes), such that for each | | |

pair of nodes the Chebyshev distance e I
IS not less than H and the number of '

attached nodes should be near equal | | |
among regions G — H — |

« Chebyshev distance (H) is the
maximal absolute componentwise
difference

P — median problem in 3D NoC design

H(X,y) = max |x; — y;]

1s1sn

* Necessary condition: V = Vp U V,y
, where V; - set of medians,
V, - Set of attached nodes,
V - set of all nodes in the graph
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Design
problems

» The problem of placement specific @—»? A B — C
nodes (P nodes), such that for each | | |

pair of nodes the Chebyshev distance @_ﬂ
IS not less than H and the number of '
attached nodes should be near equal | | |
among regions G — H — |

P — median problem in 3D NoC design

« Chebyshev distance (H) is the
maximal absolute componentwise
difference

H(X,y) = max |x; — y;]

1s1sn

* Necessary condition: V = Vp U V,y
, where V; - set of medians,
V, - Set of attached nodes,
V - set of all nodes in the graph
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Design

sroblems. » P — median problem in 3D NoC design

» The problem of placement specific @—»? A B — C
nodes (P nodes), such that for each | | |

pair of nodes the Chebyshev distance @_n 5 Lo Lo
IS not less than H and the number of '

attached nodes should be near equal | | |
among regions G — H —

« Chebyshev distance (H) is the

maximal absolute componentwise
difference

H(x,y) = max |x; —y; p—
(%,) = max |x; —yl H=3

* Necessary condition: V =Vp U V,q
, Where V;, - set of medians,
V, - Set of attached nodes,
V - set of all nodes in the graph
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Outline

3. Placement TSV nodes on the dies with

the same topologies
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Same Placement TSV nodes on the dies with

topologies

the same topologies

Problem: Find the location of P TSVs on the die

Goal: Connect the dies in 3D stack without overheating and to provide the maximal
uniform loading of connections between the dies

Input data:

« Topology

* Number of TSVs (P)

« Distance between TSVs (H)

Output data:
« Set of solutions with
locations of P TSVs

vie2 Y RS R T
Mesh / / )4
é S~ S~
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Same

topologies Criteria for choosing best solution on the die

The following criteria are applied when we choose best solution on the die:

« Distance [D, hops] — the maximal distance between TSV node and the farthest
node in it's flat region among all TSV nodes:

D=max;_, (max,, d(m;,v;))
Where ,b\”(b
d(.) — shortest distance between two nodes _\Q
P — the number of TSVs 6\%
v, — node in ith flat region 0’/ Dmai=_2 Drmax=3
m. — TSV node in it" flat region

« Difference of TSVs load [A, Number nodes] — maximal absolute difference of
nodes count among all pairs of flat regions:

A= maxi¢j|nl- — nj|,

Where

_ _ A
n=|V|, n=|Vj| A
V,V; - set of nodes in i" and j*" flat region P
correspondingly v
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Same
topologies

Placement algorithm (1/4)

It is necessary to place two TSVs (P = 2)
in a 3x3 NoC with Mesh topology, and
achieve a minimal distance from the TSV
node to other nodes, achieve the
maximal uniform attachment of nodes.

P

1. Building a matrix of shortest distances. G = R |7 |
-ﬂﬂ-ﬂﬂﬂﬂnll
1 2 1 2 3 2 3 4
n 1 0 1 2 1 2 3 2 3 Input data:
42 1 0o 3 2 1 4 3 2 * Mesh 3x3
El: 2 3 o 1 2 1 2 3 « P=2
B3: 1 2 1 0o 1 2 1 2
s 2 1 2 1 0 3 2 1
M2 3 4 1 2 3 0 1 2
B3 2 3 2 1 2 1 o 1
3 2 3 2 1 2 1 0

N -
12
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Same
topologies

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by
ascending distance. The index shows the
distance from median to nodes in the row. ? A— B — C

3. We choose two rows (since P=2) and remove
from these rows median nodes. In this step, 5 D  E  F
median nodes are H and B '

“A B, D, C E G, F, Hy I
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Same
topologies

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by

ascending distance. The index shows the
distance from median to nodes in the row. ? A — B —

3. We choose two rows (since P=2) and remove

from these rows median nodes. In this step, 5 D  E
median nodes are H and B '
Potential | |
medians G — H
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Same

Placement algorithm (2/4)

topologies
2. Sort the matrix of shortest distances by
ascending distance. The index shows the
distance from median to nodes in the row. ? A B
3. We choose two rows (since P=2) and remove | |
from these rows median nodes. In this step, 5 D  E
median nodes are H and B '
Potential Attachable | |
medians noiales G  H
|
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Same
topologies

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by
ascending distance. The index shows the

distance from median to nodes in the row. A C
3. We choose two rows (since P=2) and remove | |
from these rows median nodes. In this step, L
- D E F
median nodes are H and B

Potential Attachable | |
medians noiales G

|

B, C, G, F; H,

< E :

“ DO Al El Gl BZ FZ HZ C3 |3
- EE B D F H A, C G |
- FO Cl El Il BZ DZ HZ A3 G3
LT T >
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Same
topologies

Placement algorithm (2/4)

2. Sort the matrix of shortest distances by
ascending distance. The index shows the

distance from median to nodes in the row. A C
3. We choose two rows (since P=2) and remove
from these rows median nodes. In this step, L
- D E F
median nodes are H and B

Potential Attachable
medians noiales G |
)
A,

II/ :

“ D, A, E G1 B, F, H, c3 1,

“ EE B D F H A G G

- FO Cl El Il BZ DZ HZ A3 G3
0 1 1 2 3
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Same
topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are
attached and the distance to them in ascending order.

Attachable
nodes

5. We select connection to p-median with the minimal distance for each node. From
the resulting table you can uniquely identify nodes that can be attached to only
one median.

A

e A c E G | D F A C G |
nodes \

B B BH H H BH BH H H B B b — E — F
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Same
topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are
attached and the distance to them in ascending order.

Attachable
nodes

5. We select connection to p-median with the minimal distance for each node. From
the resulting table you can uniquely identify nodes that can be attached to only
one median.

A

e A c E 6 | D F Al ¢/ &
nodes \

B B BH H H BH BH b — E — F

7-11 November 2016 19th FRUCT Conference



Same
topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are
attached and the distance to them in ascending order.

Attachable
nodes

5. We select connection to p-median with the minimal distance for each node. From
the resulting table you can uniquely identify nodes that can be attached to only
one median.

A
Attachable
nodes

B B BH H H BH BH b — E — F
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Same

topologies Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are
attached and the distance to them in ascending order.

Attachable A C
nodes
1 1

E G I D F A C G |
,H H H BH BH H H B B

1 1 1 2 2 3 3 3 3

5. We select connection to p-median with the minimal distance for each node. From

the resulting table you can uniquely identify nodes that can be attached to only
one median.

nodes
m.. B’H B'H B’H D
1 1 1 2 2
38N -5 + TN
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Same
topologies

Placement algorithm (3/4)

4. We derive a new table that contains attachable nodes, medians, to which they are
attached and the distance to them in ascending order.

Attachable
nodes

5. We select connection to p-median with the minimal distance for each node. From
the resulting table you can uniquely identify nodes that can be attached to only
one median.

Attachable E D r
nodes
m B' H B' H B’ H
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Same
topologies

Placement algorithm (4/4)

6. Distribute remaining nodes on the medians with the maximal uniformly
attachment

Attachable nodes --n

Solution checking:

o VUV, =V

e H=2

« D=max(d(Vp, Vay) = 2 hops
« A=1 node
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Outline

4. Placement TSV nodes on the dies with

the different topologies
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Different
topologies

Placement TSV nodes on the dies with
the different topologies

Problem: Find the location of p TSVs for dies with different topologies

Goal: Connect the dies in 3D stack without overheating and to provide the maximal
uniform loading of connections between the dies

Input data:

« Topologies

« Number of TSVs (p)

« Distance between TSVs (H)

Output data:
« Set of solutions with locations of

p TSVs

A e A A
A A
[ A~ A~ A~ S
Die 1
Butterfly
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Different
topologies

Network placement on the die

Arbitrary topology Arbitrary topology

1 2 on a die
d N

— 2 |

* Nodes must form a matrix

1
|
11 4
7
8\ I — |
\ 9 8 111210
12 10

« Each node has three coordinates (X,Y,2)
Where X,Y- location on the die, Z — die
number

7
7
¢

I

I
o w
I
o | N
— I
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Different
topologies

Vertical regions

Vertical region - subgraph of the entire network, which consists of one node with
TSV and nodes attached to it on each die

/H/%/’/%/’/
2 54

Red vertical region Blue vertical region

LY LV
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Different o : :
topologies .~ Citeria for choosing best solution for full system

The following criteria are applied when we choose best solution for full system:
* Sum of diameters [SumD, hops] — the sum of diameters of all vertical regions:

P
SumD= E ' 1maxvi’wi d(vj, wj)
i=

Where

d(.) — shortest distance between two nodes
v, w;— nodes in it" vertical region

P — the number of TSVs

 Difference of TSVs load [A,z;, Number nodes] - maximal absolute difference of
nodes count among all pairs of vertical regions:

Ayp = maxi:tjlni — lel, g d%ﬂ?ﬂ
/4
Where N LPLT

n=|Vi, ”j=|\f/j| J - | //'3’

V., V. - set of nodes in i*" and j* vertical region Q&

irYj K

correspondingly A% 7L L7

%ﬂﬂ
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Different

Placement algorithm (1/4)

topologies
It is necessary to place two TSVs (p = 2) Die L
in a 3x4 NoC for 2 dies with Mesh and Mosh 5 A A 4 /
Butterfly topology correspondently, and LS LS A
achieve minimal diameter and minimal > /4 £ L, ;

Va4 /S L /S L

load difference of vertical regions.

1. Find set of the best flat solutions for

die using the previous algorithm Die 1
Butterfly
Best solutions
for Mesh
Solution 1-4---
Solution 2
Solution 10----
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Different
topologies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies.
Create vertical regions for each solution

Solution 1 for Mesh Mapping 1 from Mesh to Butterfly

Solution 10 for Mesh Mapping 10 from Mesh to Butterfly
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Different
topologies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies.
Create vertical regions for each solution

Solution 1 for Mesh Mapping 1 from Mesh to Butterfly

Solution 10 for Mesh Mapping 10 from Mesh to Butterfly
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Different
toEoIogies

Placement algorithm (2/4)

2. Mapping each flat solution from the current die to other dies.
Create vertical regions for each solution

Solution 1 for Mesh Mapping 1 from Mesh to Butterfly
% ﬁ
Solution 10 for Mesh Mapping 10 from Mesh to Butterfly

e
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Different
topologies

Placement algorithm (3/4)

3. Evaluate each resulting solution by the sum diameters of vertical regions and
load difference of TSVs

4. Add your resulting solutions to the solutions’ set for a full system

5. Repeat Stepsl-4 for all dies in the system

Die 2

Mesh

Die 1
Butterfly

Solution checking:

© V=VoUVpy
D,.s=6 hops » H=2 D,.s=5hops 7
Dpu=5hops | SumD=11 D,,,.=5 hops SumD=10
|Vieal=12 nodes | Ayg=0 IV..q|=12 nodes [ Ayk=0
|Vyiel=12 nodes. |Vbiuel=12 nodes | 23
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Different
topologies

Placement algorithm (4/4)

6. Filter the solutions’ set by minimal sum diameters

7. Filter the remaining solutions’ set by minimal difference load

Die 2 a4

Mesh < <

Die 1

Butterfly

D,.q=6 hops ] D,.q=5 hops ]
Dblue:5 hOpS _SumD:].l Dblue:5 hOpS _SumD:].O
|V(eq|=12 nodes| A =0 |Vieq|=12 Nnodes| A =0
|Vblue|:12 nOde_‘_c- |Vblue|:12 nOde__S
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Different
topologies

Placement algorithm (4/4)

6. Filter the solutions’ set by minimal sum diameters

7. Filter the remaining solutions’ set by minimal difference load

4L A~z

Z. Z.

Die 2
Mesh

Die 1
Butterfly

D,.q=5 hops
Dyiue=5 hops
|V,eq/=12 nodes
[Vpiuel=12 nodes

D,.q=6 hops
Dblue:5 hOpS
|V,eql=12 Nnodes
|Vy1uel=12 nodes
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Different
topologies

Placement algorithm (4/4)

6. Filter the solutions’ set by minimal sum diameters

7. Filter the remaining solutions’ set by minimal difference load

4L A~z

Z. Z.

Die 2
Mesh

Die 1
Butterfly

D,.q=5 hops
Dyiue=5 hops
|V,eq/=12 nodes
[Vpiuel=12 nodes

D,.q=6 hops
Dblue:5 hOpS
|V,eql=12 Nnodes
|Vy1uel=12 nodes

7-11 November 2016 19th FRUCT Conference



Conclusion

The aforementioned algorithms solve the following three problems:
 How to place TSV in a 3D NoC?

« How to avoid TSV overheating?

« How to balance the load among TSVs?

Method for same Method for different
topologies topologies

Apblvin Homogeneous Heterogeneous
PRIYING systems-on-chip systems-on-chip
Count of dies Without limitations Ui eemainmptien Aepemti

on a total die count. O(n?)

Count of nodes on
the die

Count of TSVs <5

<100
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Thank you for your attention!

Any questions?

Lev Kurbanov, Nadezhda Matveeva, Elena Suvorova
Saint-Petersburg State University of Aerospace Instrumentation

{lev.kurbanov, nadezhda.matveeva}@guap.ru,

suvorova@aanet.ru
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