

UWB Bandpass Filters with Sharp Rejection using Folded Defected Ground Structure

Mongkol Meeloon Ekasit Nugoolcharoenlap Prayoot Akkaraekthalin

Department of Special Investigation (DSI) Rajamangala University of Technology Rattanakosin, Nakhon Pathom King Mongkut's University of Technology, North Bangkok กลุ่มวิจัยสื่อสารไร้สาย Thailand

นโลยีพระจอมเกล้าพระนครเหนือ

IRELESS COMMUNICATION RESEARCH GROUP

Adad idera

UWB Bandpass Filter With Improved Rejection Band Performance using Defected Ground Structure and Slotted Step Impedance Resonator

Out Line

- 1. Introduction
- 2. Filter Design
- 3. Simulated and Measured Results
- 4. Conclusions

 Ultra-wideband (UWB) is a radio technology that can be used at very low energy levels for short-range high-bandwidth (>500 MHz) communications by using a large portion of the radio spectrum.

KMUTNB

UWB Mask (UWB Emission Limits)

Ŧ

1192219

D s

Fraded ideres

KMUT

1. Introduction

munications Research

Industrial Development Institute

Requirement of Research

- -Low loss
- -Compact size
- -High suppression of spurious responses
- -Improved stopband performances

APERTURE COMPENSATION TECHNIQUE FOR INNOVATIVE DESIGNOF ULTRA-BROADBAND MICROSTRIP BANDPASS FILTER

Lei Zhu, Huuheng Bu, and Ke Wu

0-7803-5687-X/00/\$10.00 © 2000 IEEE

2000 IEEE MTT-S Digest

Ultra-Wideband (UWB) Bandpass Filters

Using Multiple-Mode Resonator

Lei Zhu, Senior Member, IEEE, Sheng Sun, Student Member, IEEE and Wolfgang Menzel, Fellow, IEEE

IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 15, NO. 11, NOVEMBER 2005

Ultra-Wideband (UWB) Bandpass Filters with Improved Upper-Stopband Performance

22/673 marasumniulas a

Sai Wai Wong, Sheng Sun, Lei Zhu* Proceedings of Asia-Pacific Microwave Conference 2006 Copyright 2006 IEICE

1.Introduction Capacitive-Ended Interdigital Coupled Lines for UWB Bandpass Filters With Improved Out-of-Band Performances

Sheng Sun, Student Member, IEEE, and Lei Zhu, Senior Member, IEEE

IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 8, AUGUST 2006

1.Introduction EBG-Embedded Multiple-Mode Resonator for UWB Bandpass Filter With Improved Upper-Stopband Performance

Sai Wai Wong and Lei Zhu, *Senior Member, IEEE* IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 6, JUNE 2007

Compact UWB Bandpass Filter Using Stub-Loaded Multiple-Mode Resonator

Rui Li, *Student Member, IEEE, and Lei Zhu, Senior Member, IEEE* IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 1, JANUARY 2007

Design of UWB Bandpass Filter Using Stepped-Impedance Stub-Loaded Resonator

Qing-Xin Chu, Member, IEEE, and Xu-Kun Tian

IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 20, NO. 9, SEPTEMBER 2010

Novel UWB Bandpass Filter Using Stub-Loaded Multiple-Mode Resonator

Qing-Xin Chu, *Member, IEEE, Xiao-Hu Wu, and Xu-Kun Tian* IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 8, AUGUST 2011

ออาการิทยาลัยเพตโนโลย เครื่อง

Adad idara

-RT/Duroid 3003 substrate

-dielectric constant of 3.0

-thickness of 1.524 mm

-IE3D program

รมสอบสวบกลับ

and ad identity

DISENSTOWNSTIN D s

UWB Banpass Filter Characteristics

Interdigital Coupled Line Characteristics

Daylina Twat Ung

SSIR Bandstop Characteristics

Current Distributions

Bandstop responses (S21)

KMUTN

2.Filter Design

11122112

adad idera

Bandstop Characteristics

Bandstop responses (S21)

Current Distributions

KMUTN

3. Simulated and Measured Results

Photograph of the fabricated filter กลุ่มวิจัยสื่อสารไร้สาย เกิดของอยู่และเพลงแหลงพระแครเหนือ Wireless Communication Research Group

Measured and simulated responses

4. Conclusions

- -Simple Design
- -Improve passband
- -Improve lower/upper stopband performances
- -Widened upper stopband
- -Sharp rejection

Thank You for Your Attention & Question

