

A Survey of People Movement Analytics Studies in the Context of Smart Cities

Elena-Simona Lohan*, Tomi Kauppinen, and Sree Bash Chandra Debnath

*elena-simona.lohan@tut.fi

Presenter from Tampere University of Technology, Finland Other participant units: Aalto School of Science and University of Trento

Outline

- Introduction& Motivation
- Smart city and users' movement analytics
- Mobility models
- Semantic analysis
- Open-access repositories for user traces
- European and international projects
- Open challenges
- Conclusions

TAMPERE UNIVERSITY OF TECHNOLOGY

Introduction

- The location information and movement-related data is becoming easier and easier to collect from the user mobile devices: cellular&Wifi localization solutions already available + GNSS solutions
- Significant research and commercial efforts dedicated to analyze the user location and movement data in the last decade
- The goal of this paper is to give a compact and
- comprehensive overview of the challenges and solutions related to collecting, storing, analyzing, visualizing, using or distributing people's movement data

AMPERE UNIVERSITY OF TECHNOLOGY

www.cs.tut.fi/tlt/pos

Motivation – Why mobility data?

Examples of application areas

- Ehealth
 - Changes in a person's mobility patterns can be related with physical and emotional well-being and can signal incipient Neurodegenerative diseases
 - Mobility patterns and frequency of falls can be used as risk detectors of an incipient neuro-degenerative disease
- Urban planning
 - Regulating traffic in the Hot-spots of a city
 - Shared urban transport (e.g., shared cards, shared bikes, ...)
- Network operators
 - Location-based billing
 - Mobility management
- etc

TAMPERE UNIVERSITY OF TECHNOLOGY

Questions for research

- Which are the potential uses of user movement data in the context of the smart cities & IoT?
- Which mobility models and probability distribution functions to use?
- Which are the challenges related to collecting, storing, analyzing, distributing and using in any way the movement data at both individual level or from
- large volumes?
- Which solutions exist to these challenges in European and international projects?
- Which are the main public repositories of such movement data at the present moment?

Our paper gives a survey of the work addressing these challenges!

AMPERE UNIVERSITY OF TECHNOLOGY

www.cs.tut.fi/tlt/pos

Smart city & people movements

- Smart city vision: interconnected wireless links between all wireless devices (at close proximity from each other) + access to Internet through backhaul network
- 11 main movement analytics categories: Health-related, Social networking, Transportation, Smart Homes, Smart shopping, Tracking, Resource optimization, Safety, Smart urban planning, Greener environment, and Infotainment/Gamification

Mobility models (1/4)

- "Human trajectories show a high degree of temporal and spatial regularity" (Barabasi lab)
- Main parameters:
 - User step distribution
 - User angle changes
 - User speeds
 - User acceleration
 - Pause and flight times

AMPERE UNIVERSITY OF TECHNOLOGY

www.cs.tut.fi/tlt/pos

Mobility models (2/4)

 TABLE I.
 STATISTICAL DISTRIBUTIONS OF USER MOBILITY PARAMETERS FOUND IN THE LITERATURE

Model Type	Model name	Distributions
Synthetic	Brownian motion[11]	Gaussian distribution of user speeds;
		Uniform distribution of azimuth angles
Synthetic	Random waypoint model[11]	Uniform distribution of user speeds;
		Uniform distribution of azimuth angles
Synthetic	Levy walk [12], [14]	Constant user speeds
Synthetic	Mobility models for terminal [11], [25]	Either Uniform distribution or boundary crossing distribution of azimuth angles
	mobility in cellular systems	(scenario dependent)
Synthetic	Slaw model [26]	Truncated Power Law (TPL) distribution of flight times and pause times
Traced-based	Barabasi et al. [14], [24]	Truncated power law distribution of user steps
Traced-based	Kim et al. [27]	Lognormal distribution of user speed;
		non-uniform distribution of angles, reflecting the direction of roads and walkways
Traced-based	Lee et al. [12], [13]	Mostly uniform distribution for azimuth angles,
		but some cases with stronger biases at -90 and $+90$ degrees;
		Truncated Pareto distribution for flight lengths;
		Gaussian distribution for mean square displacements

Mobility models (3/4) examples

Illustration of a 2D synthetic indoor trajectory according to the random direction mobility model

Illustration of a 2D synthetic indoor trajectory according to the random waypoint mobility model

Open-source simulator available at our group page www.cs.tut.fi/tlt/pos

TAMPERE UNIVERSITY OF TECHNOLOGY

www.cs.tut.fi/tlt/pos

Mobility models (4/4) – 2D vs 3D

- Height estimation is typically the most difficult, both in indoor and outdoor scenarios
- Azimuth angles also need to be modeled in 3D case

www.cs.tut.fi/tlt/pos

Semantic analysis

Semantic analysis = deductive reasoning and conceptual representations of trajectory patterns

- Three semantic categories:
- convergence/divergence patterns, e.g., most frequented places
- flock patterns, e.g., group of friends or families
- trajectory patterns, e.g., individual pedestrian or vehicular trajectories

MPERE UNIVERSITY OF TECHNOLOGY

Open-access repositories for user traces (1/2)

- Many available, but not unified or inter-linked
- If a researcher wants to use such data, there are various distribution terms, some which require user consent for the data => large-scale analysis hindered by the distribution terms
- Not a unified format of data, as there are no current standards for mobility data collection
- A summary of the main repositories is in the next slide

AMPERE UNIVERSITY OF TECHNOLOGY

Open-access repositories for user traces (2/2)

TABLE III. OPEN-ACCESS REPOSITORIES WITH MOVEMENT-RELATED USER DATA

Repository	Data types	Data formats
CRAWDAD [18]	user traces, e.g. from taxi drivers	Various (e.g., XML, TXT, MAT, etc)
	and geo-tagged stationary positions	
OSM [17]	user traces and geo-tagged stationary positions	XML, PBF
WikiLoc [16]	user traces, under various activities	GPX
	(walking, trekking, biking, running,)	
CityPulse [43]	geo-tagged stationary positions	CSV
ODI, Trento node [47]	geo-tagged stationary positions	GeoJSON
Malaga City hall [46]	user traces and geo-tagged stationary positions	GeoJSON, CSV
TLC [49]	geo-tagged stationary positions	CSV
Dan Work [50]	vehicle traces	CSV, MAT

Example of user traces

 Taxi drivers in Rome (left) and taxi drivers in San Francisco (right), based on CRAWDAD repository

Example of user trace analysis

• Taxi driver in Rome, based on CRAWDAD repository

Speeds

www.cs.tut.fi/tlt/pos

7.11.2016

European projects

EU FP6 GeoPKDD	Spatio-temporal knowledge discovery and data mining methods
http://www.geopkdd.eu	for moving objects and their trajectories
(2005 - 2008)	
EU FP7 URBANMOB	Utilising the data produced by Oulus Urban Pervasive Infrastructure
http://cordis.europa.eu/result/rcn/166344_en.html	and other sources for modelling and exploiting urban flows and networks;
(2013 - 2014)	work based on wireless traces
EU FP7 Urban Sensing	Data collected from social media for analyzing patterns of use
http://urban-sensing.eu	and citizens' perceptions related or concerning city spaces;
(2012 - 2015)	
EU FP7 EUNOIA	Investigates how new data available in the context of smart cities can be exploited
http://eunoia-project.eu	to understand mobility and location patterns in cities; compares mobility and location
(2012 - 2013)	patterns in different European cities
EU FP7 CitySense	provided innovative smart city applications and offers a number of
(2013 - 2016)	semantically annotated datasets in open access [43]
EU Open-Cube	Developing software tools that facilitate publishing of high-quality
www.opencube-project.eu	Linked Statistical Data and reusing distributed Linked Statistical Data in data analytics
(2013 - 2015)	and visualisations; focusing on economic and social indicators in cities
EU FP7 MULTI-POS	Initial Training Network in the field of multi-technology positioning;
www.multi-pos.eu	reduced-scope analysis of indoor mobility models in the context of
(2012 - 2016)	signals of opportunity
EU H2020 ETN GEO-C	Training Network of PhD researchers focusing on how people can understand the
http://www.geo-c.eu	processes driving smart cities and their services, and how they can gain a sense
(2015 - 2018)	of control rather than being controlled by the services provided by a smart city
EU H2020 EOpen4Citizens	Project focusing on how to empower the citizens to make
http://open4citizens.eu	meaningful use of open data
(2016 - 2018)	

International projects

Future Urban Mobility	Developing a new paradigm for the planning, design and operation of
Singapore National Research Foundation	future urban mobility systems, aiming at both passengers and freight, in order to
http://ares.lids.mit.edu/fm/index.html	enhance sustainability and societal well-being on a global scale
(2010 - 2015)	
US NSF 0335244 ORBIT	Building an open access research testbed for next-generation wireless networks,
http://www.orbit-lab.org/	and covering also location-based mobile network services
(2003 - 2008)	
US NSF 0643322 Exploring dynamics of pedestrians	Producing new techniques for extracting features, processes, and phenomena from movement
http://www.nsf.gov/awardsearch	data-sets generated by agent-based models
(2007 - 2012)	
US NSF 1441177 Human Geography Motifs	Examining how shifting motifs in the everyday rhythms and tempo of people form
http://nsf.gov/awardsearch	interdependently, with mobile transport and communications infrastructure
(2014 - 2016)	
US NSF 1421325 Published network mobility traces	Developing and evaluating techniques for manipulating and then publishing
http://nsf.gov/awardsearch	mobility traces formally proven and with high accuracy
(2014 - 2017)	
US NSF 1320694 MobiBench	Producing benchmarks in the form of evaluation scenarios and test-suites for mobile networking
http://nsf.gov/awardsearch	protocols and services for user and vehicular mobility
(2013 - 2017)	

Open challenges

- Existence of many standards and formats
- Indoor user traces: limited availability
- 3D analysis: height is difficult to estimate
- Ontology approaches: still missing
- Indoor maps: poor availability or protected by NDA
- Open-access platforms: very few
- Privacy issues

Conclusions

- Finding the right tools for the collection, analysis&semantic processing of user movement data is an important step towards developing better Location Based Services
- Unified overviews of the different aspects of the movement analytics in the context of smart cities hard to find -> our paper addressed this gap
- We summarized the main mobility models, the main open-access repositories and the main EU and international projects related to user mobility data
- We pointed out towards the existing research challenges and how solving them can serve to various applications in the smart cities

AMPERE UNIVERSITY OF TECHNOLOGY