

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Improving the Face Gender Classification by the Set of Features

Vladimir Khryashchev

P.G. Demidov Yaroslavl State University, Russia

Gender Classification

Scheme of an application for video analysis

A new gender classification algorithm is based on nonlinear SVM classifier and has several types of features:

- The Scale-Invariant Feature Transform
- Histogram of Oriented Gradients
- Gabor filters
- Pre-selection of blocks

Training and testing image dataset examples

Training and testing image dataset parameters

Parameter	Value			
The total number of images	6 000			
The number of male faces	4 000			
The number of female faces	2 000			
Minimum image resolution	60×60			
Color space format	RGB			
Face position	Frontal			
People's age	From 18 to 65 years old			
Race	Caucasian			

Experimental results with learning on LFW dataset

Approach			Recognition Rates (%)			
Features	Learning Database	Test Database	Classifier	Female	Male	Overall
Raw pixels	LFW	LFW	SVM	86.89	94.13	91.27±1.67
Standart LBP	LFW	LFW	SVM	89.78	95.73	93.38±1.50
Boosted LBP	LFW	LFW	Adaboost	91.98	95.98	94.40±0,86
Boosted LBP	LFW	LFW	SVM	92.02	96.64	94.81±1.10

7

Experimental results with learning on LFW dataset

Approach			Recognition Rates (%)			
Features	Learning Database	Test Database	Classifier	Female	Male	Overall
HoG	LFW	LFW	SVM	85.49	95.79	90.64
HoG	LFW	LFW	SVM	91.76	96.08	93.92
HoG+Gabor+SIFT	LFW	LFW	Adaboost	89.51	97.12	93.32
HoG+Gabor+SIFT	LFW	LFW	Adaboost	95.65	97.92	96.79
HoG+Gabor+SIFT	LFW	RUS-FD	Adaboost	83.7	84.23	83.97

Experimental results with learning on RUS-FD dataset

Approach					Recognition Rates (%)		
Features	Learning Database	Test Database	Pre-processing	Classifier	Female	Male	Overall
HoG	RUS-FD	LFW	DoG + contrast alignment	SVM	78.78	89.14	83.96
HoG	RUS-FD	RUS-FD	DoG + contrast alignment	SVM	91.48	92.60	92.04

Conclusions

- 1. Adopting SVM with the selected LBPH bins, we obtain the classification rate of 94.81% on the LFW database.
- 2. We obtain the performance of 96.79% by applying boosting learning on LFW dataset 92.04% by applying Support Vector Machine (SVM) on RUS-FD dataset.
- 3. The approach proposed in this paper is promising to be further studied on other face classification tasks, such as age estimation and emotion recognition.

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Improving the Face Gender Classification by the Set of Features

Vladimir Khryashchev

P.G. Demidov Yaroslavl State University, Russia