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Example of C code

#include <stdlib .h>
#include <string.h>

struct vec { size_t n; size_t el; void xels; };

void remove_eq(struct vec *xv, const void xel) {
for (size_t i = 0; i < v—>n; ++i) {
if (memcmp((const char *x)v—>els 4+ v—>el x i, el,
v—>el))
continue;

memmove ((char x)v—>els + v—>el * i,
(const char x)v—>els + v—>el *x (i + 1),
v—>n— — 1 — 1);
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Decomposition of C code

Structs Just data with automatic accessors; can be repaced with
bitwise operations on in-memory representations;

Flow control In case of continue, break, and goto which doesn’t go
backwards can be replaced with more verbose conditional
statements;

Multiple types of numbers Specific cases of a more general notion of a
number modulo some power of two;

Pointer arithmetics Many mechanisms applicable to the normal
arithmetics can be used for pointers as well.

And so on. Evidently, one could write the same programs with a really
small set of constructs.
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Example of Lisp code

(print
((lambda (n)
(let ((cont #f))
(let ((m (call/cc (lambda (k)
(set! cont k)
(cons 1 n)))))
(if (> (cdr m) 0)
(cont (cons (*x (car m) (cdr m))
(= (cdr m) 1)))
(car m)))))
6))
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@ Decide which class of data manipulation is of interest;

@ Create a type system which is capable solely of representing this
precise data manipulation;

@ Determine the sufficient basis of operations which can be
performed on the data and formalize the algorithm for them:;

@ Extend the language with new constructs as needed, slightly
adapting the algorithm.
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Value range analysis

x < rand() mod 16

x € [0;15]

x € [0;7]

T+ xr+8

x € [8;15]
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Type theory

Infinite numbers

e Have range [0; +00);

° Support [+]7 [_]7 [X]7 [/]7 [<]7 [:]7
@ Type of integer is determined at time of analysis.

Modular numbers with parameter n

e Have range [0;2");

o Support [+], [=], [x], /], [<]; [=]: AL V], [~);

@ At risk of overflow.

Exist conversions between the two kinds.
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Arithmetics

@ea +0b,a-0b,axba/ba<b a==0>b—don’treally need an
introduction;

@ a & b— bitwise AND;

@ a | b— bitwise OR;

@ “a— bitwise negation;

@ inf a— conversion to a natural number;

@ a bits N— a modulo 2%.
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Randomness

Rationale

Expressions like (3 + (0xF8 A 0xA) x 4) are completely deterministic,
don’t allow us to simulate user input.

rand bits N — an arbitrary value in [0; 2N).
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Tree of arithmetic expressions

rand mod 24

rand mod 24 0Ob1110
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Chaining of assignments

Chaining
Chaining is ordered execution of statements, with statements
commonly separated by semicolons:

S$1:;825...58np

Assignment statement

Setting the value pointed to by the identifier v to the result of
evaluation of expression e:
v<ie
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Chaining of assignments: naive version

Ox = rand bits 4 | = € [0;15]

Qy = Qx + 2|y €[0+2;15+2] = [2;17]

Qz = Qx + 5| z€[0+5;15+ 5] = [5;20]

O@m = Qz - Qy | m e [5—17;20 — 2] = [—12; 18]
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Chaining of assignments: more robust version

©x = rand bits 4 | * = rand; bits 4

@y = Qx + 2 y = rand; bits 4 + 2

Qz = Qx + 5| z=rand; bits4+5

Om = Qg - @y m = rand; bits 44+ 5 — (rand; bits 4+ 2) =3
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Conditional expressions
oSS
e1 #0

T < €2 T < €3

x=(e1 #0)-e2+ (e1 =0)-e3
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n
A\

’/ N\

for v to e do s done, e € [n;m] | 5;8;8;...;8;
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if n < e then s fi;
if n+1 < e then s fi;

if m — 1 < e then s fi;
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Further extensions

e Pure functions: they are just operations on numbers, and their
range analysis can be pre-compiled in a modular fashion;

@ More types of numbers;

e Probabilistic model: determine not only the possibility of a certain
execution path but its probability as well;

e Complex structures based on bitwise arithmetics;

@ More complex loop handling with finding repeating states of
interconnected variables in a loop.
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Conclusion

@ The algorithm we’ve developed can be easily checked due to
modular approach taken during its development;

@ The algorithm can easily be extended to account for more complex
language features;

e Development has been a relatively simple task of creation, not
implementation.
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