
Creation of a Static Analysis Algorithm Using Ad
Hoc Programming Languages

D. Khalansky, A. Lazdin, I. Muromtsev

ITMO University

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 1 / 18

Outline

1 Languages in language research

2 Our method

3 Case: value range analysis

4 Language
Type theory
Arithmetics

Randomness

Imperative order
Naive implementation
More robust implementation

Conditionals
Loops

5 Further extensions

6 Conclusion

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 2 / 18

Example of C code

#include <s t d l i b . h>
#include <s t r i n g . h>

struct vec { s i z e t n ; s i z e t e l ; void ∗ e l s ; } ;

void remove eq (struct vec ∗v , const void ∗ e l) {
for (s i z e t i = 0 ; i < v−>n ; ++i) {

i f (memcmp((const char ∗)v−>e l s + v−>e l ∗ i , e l ,
v−>e l))

continue ;
memmove((char ∗)v−>e l s + v−>e l ∗ i ,

(const char ∗)v−>e l s + v−>e l ∗ (i + 1) ,
v−>n−− − i − 1) ;

−− i ;
}

}
Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 3 / 18

Decomposition of C code

Structs Just data with automatic accessors; can be repaced with
bitwise operations on in-memory representations;

Flow control In case of continue, break, and goto which doesn’t go
backwards can be replaced with more verbose conditional
statements;

Multiple types of numbers Specific cases of a more general notion of a
number modulo some power of two;

Pointer arithmetics Many mechanisms applicable to the normal
arithmetics can be used for pointers as well.

And so on. Evidently, one could write the same programs with a really
small set of constructs.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 4 / 18

Example of Lisp code

(print
((lambda (n)

(l et ((cont #f))
(l et ((m (c a l l / cc (lambda (k)

(set ! cont k)
(cons 1 n)))))

(i f (> (cdr m) 0)
(cont (cons (∗ (car m) (cdr m))

(− (cdr m) 1)))
(car m)))))

6))

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 5 / 18

Our method

1 Decide which class of data manipulation is of interest;

2 Create a type system which is capable solely of representing this
precise data manipulation;

3 Determine the sufficient basis of operations which can be
performed on the data and formalize the algorithm for them;

4 Extend the language with new constructs as needed, slightly
adapting the algorithm.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 6 / 18

Value range analysis

x← rand() mod 16

x < 8

x← x + 8

x ∈ [0; 15]

yes

x ∈ [0; 7]

no

x ∈ [8; 15]

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 7 / 18

Type theory

Infinite numbers

Have range [0; +∞);

Support [+], [−], [×], [/], [<], [=];

Type of integer is determined at time of analysis.

Modular numbers with parameter n

Have range [0; 2n);

Support [+], [−], [×], [/], [<], [=], [∧], [∨], [∼];

At risk of overflow.

Exist conversions between the two kinds.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 8 / 18

Arithmetics

a + b, a - b, a * b, a / b, a < b, a == b — don’t really need an
introduction;

a & b— bitwise AND;

a | b— bitwise OR;

~a— bitwise negation;

inf a— conversion to a natural number;

a bits N— a modulo 2N .

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 9 / 18

Randomness

Rationale

Expressions like (3 + (0xF8 ∧ 0xA)× 4) are completely deterministic,
don’t allow us to simulate user input.

Format

rand bits N — an arbitrary value in
[
0; 2N

)
.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 10 / 18

Tree of arithmetic expressions

+

×

1 rand mod 24

×

∧

rand mod 24 0b1110

3

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 11 / 18

Chaining of assignments

Chaining

Chaining is ordered execution of statements, with statements
commonly separated by semicolons:

s1; s2; . . . ; sn

Assignment statement

Setting the value pointed to by the identifier v to the result of
evaluation of expression e:

v ← e

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 12 / 18

Chaining of assignments: naive version

@x = rand bits 4 x ∈ [0; 15]

@y = @x + 2 y ∈ [0 + 2; 15 + 2] = [2; 17]

@z = @x + 5 z ∈ [0 + 5; 15 + 5] = [5; 20]

@m = @z - @y m ∈ [5− 17; 20− 2] = [−12; 18]

;

;

;

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 13 / 18

Chaining of assignments: more robust version

@x = rand bits 4 x = rand1 bits 4

@y = @x + 2 y = rand1 bits 4 + 2

@z = @x + 5 z = rand1 bits 4 + 5

@m = @z - @y m = rand1 bits 4 + 5− (rand1 bits 4 + 2) = 3

;

;

;

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 14 / 18

Conditional expressions

e1

x← e2 x← e3

e1 6= 0

e1 = 0

x = (e1 6= 0) · e2 + (e1 = 0) · e3

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 15 / 18

Loops

for v to e do s done, e ∈ [n;m]

n︷ ︸︸ ︷
s; s; s; . . . ; s;
if n < e then s fi;
if n + 1 < e then s fi;
...
if m− 1 < e then s fi;

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 16 / 18

Further extensions

Pure functions: they are just operations on numbers, and their
range analysis can be pre-compiled in a modular fashion;

More types of numbers;

Probabilistic model: determine not only the possibility of a certain
execution path but its probability as well;

Complex structures based on bitwise arithmetics;

More complex loop handling with finding repeating states of
interconnected variables in a loop.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 17 / 18

Conclusion

The algorithm we’ve developed can be easily checked due to
modular approach taken during its development;

The algorithm can easily be extended to account for more complex
language features;

Development has been a relatively simple task of creation, not
implementation.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis 18 / 18

	Languages in language research
	Our method
	Case: value range analysis
	Language
	Type theory
	Arithmetics
	Imperative order
	Conditionals
	Loops

	Further extensions
	Conclusion

