Creation of a Static Analysis Algorithm Using Ad

Hoc Programming Languages

D. Khalansky, A. Lazdin, I. Muromtsev

ITMO University

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Outline

@ Languages in language research
© Our method

© Case: value range analysis

@ Language
e Type theory

@ Arithmetics
@ Randomness

@ Imperative order
@ Naive implementation
@ More robust implementation

e Conditionals
@ Loops

© Further extensions

@ Conclusion

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Example of C code

#include <stdlib .h>
#include <string.h>

struct vec { size_t n; size_t el; void xels; };

void remove_eq(struct vec *xv, const void xel) {
for (size_t i = 0; i < v—>n; ++i) {
if (memcmp((const char *x)v—>els 4+ v—>el x i, el,
v—>el))
continue;

memmove ((char x)v—>els + v—>el * i,
(const char x)v—>els + v—>el *x (i + 1),
v—>n— — 1 — 1);

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Decomposition of C code

Structs Just data with automatic accessors; can be repaced with
bitwise operations on in-memory representations;

Flow control In case of continue, break, and goto which doesn’t go
backwards can be replaced with more verbose conditional
statements;

Multiple types of numbers Specific cases of a more general notion of a
number modulo some power of two;

Pointer arithmetics Many mechanisms applicable to the normal
arithmetics can be used for pointers as well.

And so on. Evidently, one could write the same programs with a really
small set of constructs.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Example of Lisp code

(print
((lambda (n)
(let ((cont #f))
(let ((m (call/cc (lambda (k)
(set! cont k)
(cons 1 n)))))
(if (> (cdr m) 0)
(cont (cons (*x (car m) (cdr m))
(= (cdr m) 1)))
(car m)))))
6))

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

@ Decide which class of data manipulation is of interest;

@ Create a type system which is capable solely of representing this
precise data manipulation;

@ Determine the sufficient basis of operations which can be
performed on the data and formalize the algorithm for them:;

@ Extend the language with new constructs as needed, slightly
adapting the algorithm.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Value range analysis

x < rand() mod 16

x € [0;15]

x € [0;7]

T+ xr+8

x € [8;15]

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Type theory

Infinite numbers

e Have range [0; +00);

° Support [+]7 [_]7 [X]7 [/]7 [<]7 [:]7
@ Type of integer is determined at time of analysis.

Modular numbers with parameter n

e Have range [0;2");

o Support [+], [=], [x], /], [<]; [=]: AL V], [~);

@ At risk of overflow.

Exist conversions between the two kinds.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Arithmetics

@ea +0b,a-0b,axba/ba<b a==0>b—don’treally need an
introduction;

@ a & b— bitwise AND;

@ a | b— bitwise OR;

@ “a— bitwise negation;

@ inf a— conversion to a natural number;

@ a bits N— a modulo 2%.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Randomness

Rationale

Expressions like (3 + (0xF8 A 0xA) x 4) are completely deterministic,
don’t allow us to simulate user input.

rand bits N — an arbitrary value in [0; 2N).

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Tree of arithmetic expressions

rand mod 24

rand mod 24 0Ob1110

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Chaining of assignments

Chaining
Chaining is ordered execution of statements, with statements
commonly separated by semicolons:

S$1:;825...58np

Assignment statement

Setting the value pointed to by the identifier v to the result of
evaluation of expression e:
v<ie

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Chaining of assignments: naive version

Ox = rand bits 4 | = € [0;15]

Qy = Qx + 2|y €[0+2;15+2] = [2;17]

Qz = Qx + 5| z€[0+5;15+ 5] = [5;20]

O@m = Qz - Qy | m e [5—17;20 — 2] = [—12; 18]

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Chaining of assignments: more robust version

©x = rand bits 4 | * = rand; bits 4

@y = Qx + 2 y = rand; bits 4 + 2

Qz = Qx + 5| z=rand; bits4+5

Om = Qg - @y m = rand; bits 44+ 5 — (rand; bits 4+ 2) =3

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Conditional expressions
oSS
e1 #0

T < €2 T < €3

x=(e1 #0)-e2+ (e1 =0)-e3

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

n
A\

’/ N\

for v to e do s done, e € [n;m] | 5;8;8;...;8;

Khalansky, Lazdin, Muromtsev

if n < e then s fi;
if n+1 < e then s fi;

if m — 1 < e then s fi;

Ad Hoc Languages in Static Analysis

Further extensions

e Pure functions: they are just operations on numbers, and their
range analysis can be pre-compiled in a modular fashion;

@ More types of numbers;

e Probabilistic model: determine not only the possibility of a certain
execution path but its probability as well;

e Complex structures based on bitwise arithmetics;

@ More complex loop handling with finding repeating states of
interconnected variables in a loop.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

Conclusion

@ The algorithm we’ve developed can be easily checked due to
modular approach taken during its development;

@ The algorithm can easily be extended to account for more complex
language features;

e Development has been a relatively simple task of creation, not
implementation.

Khalansky, Lazdin, Muromtsev Ad Hoc Languages in Static Analysis

	Languages in language research
	Our method
	Case: value range analysis
	Language
	Type theory
	Arithmetics
	Imperative order
	Conditionals
	Loops

	Further extensions
	Conclusion

