Anonymity in information processing, storage and transmission

Sergey Bezzateev,

bsv@aanet.ru

SUAI, Russia

Anonimity

Anonymity is derived from the Greek word ἀνωνυμία - anonymia, meaning "without a name" or "namelessness".

General meaning: personal identity, or personally identifiable information of that person is not known.

Anonimity

- Who?
- Where?
- What?

Microsoft: "10 Immutable Laws of Security"

 Law #9: Absolute anonymity isn't practical, in real life or on the Web

Instruments

Blind signature

• Onion functions— $F(k_i, F(k_{i-1}, ..., F(k_1, x)...)$

Error correcting codes

Locally decodable codes

Problem "WHO?"

E-voting

• E-commerce

E-libraries

Blind ticket

Blind ticket

Service

Verification

 $V(B(T), S(B(T),SK_u), PK_u) = \{true, false\}$

Sign

 $S(B(T),SK_s)$

User

Obtain ticket with signature

T, $S(T,SK_s)$

Problem "WHERE?"

Problem "WHAT?"

E-voting

- Hiding calculations (in cloud computers)
 - Hiding data
 - Hiding functions

Hiding querying to databases

Computational Private Information Retrieval(PIR) Protocol

Error correcting codes in the PIR protocol

Decryption key – (L,G) and (L,g) – codes. Message -

$$x=[(a_1+b_1)\cdot P_1, (a_2+b_2)\cdot P_2, ..., (a_n+b_n)\cdot P_n],$$

where

a_i - any code word from (L,G)-code with minimal distance D,

 b_i – information code word from (L,g)-code , $wt(b_i)=d\leq (D-1)/2$,

P_i – permutation matrix,

(L,G)-code is subcode of (L,g)-code.

Error correcting codes in the PIR protocol

Query
$$-Q_j = [h_1^*, h_2^*, ..., H_j^*, ..., h_n^*]$$

where $h_i^* = A_i \cdot h \cdot P_i$, h - parity check matrix
for (L,g) code, A_i -random $r \times r^*$ -matrix ,
 $H_j^* = A_j \cdot H \cdot P_j$, H - parity check matrix for (L,G) code,
 A_j -nonsingular $r \times r$ - matrix,
 r^*, r - redundancy of (L,g) and (L,G)- codes.
 $R_j = Q_j(x) = x \cdot Q_j^T = b_j \cdot H^T \cdot A_j^T$,
By using A_j^{-1} and decoding algorithm for (L,G)-
code it is easy to restore b_j

THANK YOU!

Questions ???