
The software simulator of a parallel

computing system with message

passing

7th FRUCT seminar.
Eugene Gavrin

eugene.gavrin@guap.ru

Introduction

• Information systems need to efficiently use

massive distributed and parallel systems

• There is lack of tools aimed to development

of parallel algorithms

• Requires ability to simulate and debug

created algorithms

Purposes

• Create tool aimed to simulate
parallel algorithms

• Provide a mechanism to
implement C/C++ code

• Allow execution of different
computational tasks on
independent processing
elements

• Allow configuration of target
platform

• Collect execution dump

Existing alternatives

• Some number of hardware simulators like:

NcSim, NoXim, NocSim and etc.

– There are aimed to simulation of hardware.

– Simulation of high-level algorithms becomes

slower and more complicated.

• There are no software simulators.

+ Hardware part is simulated only for adequate

evaluation of algorithms

Program

• Directed graph

represents parallel

program

• Nodes are active

program elements

• Links are data

dependencies

Platform

• Set of processor

elements connected to

each other

• Can be configured in

special file

– Network bandwidth

– Count of PE’s

– Type of PE’s

Computational tasks

Integer[1100] (0/10)

Blocks pool

Integer[550] (0/2)

Matrix1

blocks

Integer[550] (0/2)

Matrix2

blocks

Integer[1100] (0/10)

Produced blocks

4

10

Form

Matrix 1

Blocks

4

10

Form

Matrix 2

Blocks

10

3 5

Join

blocks

4

1
Collect

result

4

8

12

Parallel

processing

block

1

2

X

Reference

Matrix

Production

4

10

Blocks

production

1

4

10

Blocks

production

2

4

10

Blocks

production

2

P

4
Blocks

for

prod

Integer[1100] (0/1)

Temp

P

12

Prod.

result

Integer[1100] (0/1)

Temp 2

Integer[1000] (0/1)

Matrix1

Integer[1000] (0/1)

Matrix2

1

10 X

Produce

Matrix 1
1

10 X

Produce

Matrix 2Const 1 Const 2

Integer[1000] (0/1)

Dest. matrix

10 X

Init
destination
matrix

• Terminals

+ Data transformation code

execution

• Shared Data Objects

+ Shared data in distributed

systems

• Dynamic control

+ Conditional unrolling

+ Parallel iterative cycles

+ Parallel conditional cycles

Implemented dynamics

Supports:

• Dynamic operators

generation and

removal

• Dynamic branch

unrolling

BSN

CASE:

sel. encode

Ready packets

1 2 3

Mac

Enc.1

Crypt 1

Enc.2

Crypt 2

Draft data

1

Draft data

1

Draft data

2

IF:
need prep.

IF:

need prep.

Enc.3

Crypt 3

Draft data

3

IF:

need prep.

23

Possible usage

• Create parallel algorithms

• Implement real functionality using existing
C/C++ code

• Debug real algorithms on configurable
platform

• Collect and analyze different dumps as a
result of simulation

How it works

Comm. algorithm

Simulation

•*.vcd schemes

•Debug info

•Process execution info

•PE workload

Output

Algorithm correction

xml

Summary

Hardware part:

• PE types

• Task queue

• Data buffers

Software part:

• Dynamic operators

• Shared data

• Code implementation

• Statistics on results of

work

Thank you

