Experiences on the Development and Pilot Testing of Autonomous Wireless Sensor Networks

Marko Hännikäinen
Tampere University of Technology

Outline

- History and introduction to WSNs
- TUTWSN technology
- **TUTWSN** pilots
- Conclusions

Wireless Sensor Networks

- WSN consists of a large number of nodes that organise autonomously
- WSN nodes are resource constrained (limited computing, communication, and energy)
- WSN targets at low price, small size, robustness, maintenance freedom and fast installation
- WSN applications are versatile, they
 - Measure environment
 - Control other systems
 - Identify, locate persons and assets
 - Transfer, save, and refine information

Main WSN standards

Wireless HART

WSN research at TUT

WSN Research on Low-Energy WSNs in Practice

- 1. WSN theory and technology
- Design tools and infrastructure integration
- 3. Applications and services
 - Pilots is real environments and application cases
 - Feasibility on business models

Technology base First pilots started Pilots with 2005 companies 2009-

2002 2003 2004 2005 2006 2007 2008 2009 2010

TUTWSN (2.4 GHz), wireless sensor/router node

Battery holder

Pushbutton 2xLed

Lux sensor

Extension area for add-on sensors

3D vibration sensor (shock detection)

On-board temp sensor

Gateway node (2.4 GHz)

Auxliary sensors

Memory card (microSD)

TUTWSN networking

TUTWSN node softwar

Node is an embedded system running protocols and several applications

- Interfaces for RS232, I/O, Ethernet (TCP/IP), sensors
- Energy optimised MAC layer and cost-based multi-hop routing
- Firmware can be updated onthe-field
- Performance is trade-off (cross layer design)

End-to-end service architecture

Indoor positioning

Building automation

Factory floor measurements

TUTWSN application

Service providers Integrators End users

> Service integration e.g. Google)

back-office servers

Customer

Java

Messaging Service

XML (SOAP, SIP)

TCP/IP sockets

DB IMS XML TCP OPCRMI SIP

TUTWSN Gateway Software

Server interfaces, communication

protocols

Residential

monitoring

Gateway

TUTWSN:

measure,

positioning

control,

logistics

Outdoors environment

WSN administration tools

Fruct 2010, Marko Hännikäinen

INTERNET (intranet, mobile)

SQL/

ODBC

Transport

Online java, web applications

Personnel locationing and alarm button at hospital

Sewer line monitoring, a Solvay Chemicals, Voikkaa

Water level alarms on 5km sewer line

23 nodes, 2 Gateways

■ 433MHz technology

Fruct 2010, Marko Hännikäinen

Horse monitoring application

Container monitoring, on a container ship below deck

Outdoors pilot

- ■6 km2
- Mainly fields, gardens, lakes, forests, hills
- Up to 70 sensors scattered
- Temperatures, light, moisture

Greenhouse monitoring

For adjusting greenhouse climate based on WSN measurements

TUTWSN in **TUT's** campus (about

300 nodes)
Building automation and maintenance services

Students design new applications

Conclusions

Conclusions on TUTWSN Pilots and R&D requirements

- Piece-wise solutions, lack of common interfaces and tools -> Cross-layer design
- Lack of killer application & strong belief in killer application -> Niche markets the first to start
- Lack of de-facto standard & strong belief in near future de-facto standard -> WSNs implemented with standard components
- Nice ideas -> New services and business models

