
Self-adapting software

for meeting

the multicore

programming challenge

Konstantin Nedovodeev,

research assistant,

SUAI, HPCaNTI

Architecture

Multicore processors (MPSoCs) in question

comprise the following components:

• Control core;

• Computational cores;

• DMA-cores.

explicitly-managed memory (EMM) architecture;

small local (scratchpad) memories;

heterogeneous cores (cntrl + comp. + DMAs);

big common (off-chip) memory;

Representatives:

OMAP, DaVinci TI, Cell IBM+Toshiba+Sony, Diopsis Atmel,
“Multicore” Elvees (Russia)

2

Class of problems to be solved

1. Sequence of algorithm steps does not depend on values of
particular data elements;

2. Manipulating matrices, vectors and scalars in mathematical
sense;

3. Problem could be formulated in terms of block(tile) processing
steps.

Matrix-vector product is an example (BLAS):

y = α A x + β y (matrix form), A ∈ RNxN, x,y ∈ RN, α, β ∈ R

(yi = α Ai,0 x0 + β yi

(yi = α Ai,j xj + yi ∀ 1 ≤ j ≤ N’)

∀ 0 ≤ i ≤ N’) (block form),

N’ = ceil(N / NB), NB – blocking factor

3

Issues addressed by an approach

1. workload distribution among computational cores;

2. information transfers distribution among different channels:

3. trying to reuse data in the local store (locality-awareness);

4. trying to use LS <-> LS (bypassing) as much as possible;

5. using multi-buffering to hide memory latency;

6. local memory allocation without fragmentation;

7. managing synchronization of parallel processes;

8. avoiding WaW, WaR dependencies by allocating temporary

store in common memory (results renaming).

4

An approach

1. Using graph representation (“folded” graph) of mass problem;

mirrors the informational structure of a problem;

2. Offline construction of representation of particular problem

(abstract macro-flow graph (AMFG));

corresponds to particular blocking choice;

3. Using hypergraph representation of an HMP;

representation comprises:

• communication subsystem characteristics;

• memory subsystem characteristics;

• characteristics of different cores;

4. Resource allocation using particular hypergraph and AMFG;

computation mapping + computation scheduling + transfers mapping + transfers

scheduling + memory allocation;

5

An approach (continued)

5. Automatic source code generation;

source codes are written in C language;

6. Run-time library support as an abstraction layer;

Abstraction Layer (AL) is responsible:

1. managing computational cores operation;

2. managing DMA transfers;

3. managing synchronization;

7. Using hand-crafted subprograms (computational granules) for

computational cores;

highly optimized codes fit entirely into the local store.

6

Source code snippet (C language)

#define HMP_MODEL_NAME

#include "include\SIL.h"

#include …
…
#ifndef DMA_NUM #define DMA_NUM M #endif
#ifndef DSP_NUM #define DSP_NUM N #endif
...

/* SAMPL-program implementation */

retType samplProgramName(..., par_N_type parN){
/* Creating fragments of the DMA-queues tick 0 */

...

DSP_0_INIT(…);
...

DMA_0_INIT_RUN(…);
...

/* Creating fragments of the DMA-queues tick 1 */

...

SAMPL_BARRIER(DMA_NUM);
DSP_0_RUN();
...

DMA_0_RUN();
...

/* Creating fragments of the DMA-queues tick 2 */

...

SAMPL_BARRIER(DMA_NUM + DSP_NUM);

...

return retVal;

}// end sampl_program_name()

...

#undef DMA_NUM

#undef DSP_NUM

#undef HMP_MODEL_NAME 7

Flowchart of program execution

Computation

Transfers

Barrier

…

…

…

Overlapping computation and communication

by using multi-buffering of local store

tick 0 tick 1 tick Ktick i

8

Self-Adapting Matrix Processing Library (SAMPL)

Adaptation in SAMPL (SSelf-AAdapting
MMatrix PProcessing LLibrary) is a multi-stage
process. Parallel application program is
synthesized through the usage of formal
representation of computation, namely
macro-flow graph which is generated
automatically.

Abstract macro-flow graph depends solely
on data partitioning but not on a specific
multicore processor characteristics.

While performing scheduling and
allocation a specific macro-flow graph is
constructed which is related to a particular
multicore processor chosen.

After the schedule is constructed it
contains all the information needed
(computational tasks distribution across
the computational cores, data exchanging
distribution among DMA-cores and
information exchange channels, etc.) to
synthesize an application program to
perform parallel data processing on a
specific multicore-based system.

9

