Percentiles calculation of the IP packet delay distribution function

A. Sokolov, St. Petersburg State University of Telecommunications, Russia

Two parameters of the QoS

Quality of service in the IP-networks is standardized by several indices. There are two values related to the delay of the IP-packets between user-network interfaces in the list of the quality of service indices:

- IP Packet Transfer Delay (IPTD);
- IP Packet Delay Variation (IPDV). IPDV is a difference between 0,999 quantile of the IP-packets delay distribution function and minimal transfer time of the IP-packets.

Additional network performance parameters

- In ITU-T Recommendation Y.1543 other delay variation percentiles are proposed as performance attributes:
- •90th percentile DV90.
- •99th percentile DV99.

By taking multiple percentile readings and a minimum delay reading, the distribution of delays can be better understood .

Quantile estimation method according to recommendation Y.1541 (1)

$$\gamma(i) = 6 \frac{x_P - \frac{t_P(i) - \overline{t_B}(i)}{\sigma_B(i)}}{1 - (x_P)^2}, \quad \omega(i) = \gamma(i) [\sigma_B(i)]^3$$

$$\overline{t}_B(i)$$
 – mean value of delay on i-th stage

$$\sigma_B(i)$$
 – mean square value

 $t_P(i)$ – p-quantile

 x_P – p-quantile on conditions that studied random variable is a normal variate

Quantile estimation method according to recommendation Y.1541 (2)

It is assumed that delay values on each stage are mutually independent

$$\overline{t}_B = \sum_{i=1}^N \overline{t}_B(i), \quad \sigma_B^2 = \sum_{i=1}^N \sigma_B^2(i)$$

$$\gamma = \frac{\sum_{i=1}^{N} \omega(i)}{\left[\sigma_{B}\right]^{3}} \qquad t_{P} = \overline{t}_{B} + \sigma_{B} \left\{ x_{P} - \frac{\gamma \left[1 - (x_{P})^{2}\right]}{6} \right\}$$

In the examples included in the ITU method, all calculations are made for the value p = 0.999. This probability was chosen by ITU for the standardization of the quantile of IP packets delay distribution between user-network interfaces.

Quantile estimation for the exponential distribution

For N-stage model consisting of M/M/1 queuing system models with identical parameters (mean arrival rate λ and mean service rate μ), delay distribution function is defined by the following expression:

$$S(t) = 1 - e^{-(\mu - \lambda)t} \sum_{j=0}^{N-1} \frac{\left[(\mu - \lambda) \cdot t\right]^{N-j-1}}{\left(N - j - 1\right)!}$$

From this expression quantiles of the delay distribution function can be numerically evaluated.

Quantile estimation for 3 phases

	ρ=(0,20,4)	ρ =(0,40,6)	ρ =(0,60,8)
$x_{p=0,9}$	0,015	0,014	0,011
$x_{p=0,99}$	0,012	0,012	0,011
$x_{p=0,999}$	0,007	0,009	0,015

Quantile estimation for 5 phases

	ρ=(0,20,4)	ρ =(0,40,6)	ρ =(0,60,8)
$x_{p=0,9}$	0,013	0,013	0,012
$x_{p=0,99}$	0,011	0,011	0,012
$x_{p=0,999}$	0,006	0,007	0,011

Quantile estimation for 7 phases

	ρ=(0,20,4)	ρ=(0,40,6)	<i>ρ</i> =(0,60,8)
$x_{p=0,9}$	0,011	0,011	0,011
$x_{p=0,99}$	0,010	0,010	0,010
$x_{p=0,999}$	0,005	0,005	0,008

Percentiles calculation of the IP packet delay distribution function

Thank you for your attention

A. Sokolov, St. Petersburg State University of Telecommunications, Russia a.n.sokolov@hotmail.com