
Optimizing the performance of the
algorithms block data processing

in Linux

 Ovseenko Anton, SUAI
 Victor Minchenkov, SUAI

 Alexander Povalyaev, EMC

27 april 2011

Problem statement
1. It is known that the program

does, but there is no source
code.

2. Required to optimize the
running time by changing
the settings of operating
system and input data.

3. Other system processes should not degrade.
4. Consider only modern architecture and kernel version

(kernel 2.6, multiprocessor hardware systems and
64-bit operating system). 2/16

What can optimize?

Methods to accelerate execution of the program
 Task scheduler (priority)
 Input/Output scheduler (priority)
 Use huge memory pages
 Work at the kernel space (Driver OS)

3/16

Task scheduler

O(1) – Appeared in 1993. *
2 queues processes (sleeping
and active), 140 priorities. Now
 contains 7000! lines of C code.

CFS - Completely Fair Scheduler (kernel 2.6.23 from 9.10.2007).

You can not control the priority of the process directly, we can only
influence it: nice nice_value program
 renice nice_value PID
 Nice value: [-20, 19]
* ”Understanding the Linux Kernel” byDaniel P. Bovet, Marco Cesati

4/16

Task scheduler
 (calculation of pi, 60000 characters, 2 processes)

5/16

nice (red line) -
nice in x-axis
(-20, 19)

default (green line)
nice = const(0)

Task scheduler
 (calculation of pi, 60000 characters, 2 processes)

6/16

nice (red line) -
nice in x-axis
(-20, 19)

default (green line)
nice = const(0)

Performance
loss

 for other
process

in OS

Task scheduler
 (calculation of pi, 60000 characters, 5 processes)

7/16

nice (red line) -
nice in x-axis
(-20, 19)

default (green line)
Groups of 4
Processes,
nice = const(0)

Input/Output scheduler

 *

Input/Output schedulers operates:
 Merger - process of adopting two or more adjacent

Input/Output requests, and combining them into one request.
 Sorting - the process of ordering Input/Output requests.

* Linux I/O schedulers, Hao-Ran Liu
8/16

Input/Output scheduler

I/O schedulers installed in the kernel (Fedora 14)
 Complete Fair Queueing (CFQ) – default (с 2.6.18)
 NO-OP [USB, SSD].

Useful when there is no cost to the mechanical movement.
 Deadline

[To speed up the reading from the disk uses the principle of
lazy writing].
Is useful for distributed queries to the disk (database).

 Anticipatopy - not in the current kernel
[Tries to "guess" next user action]. Minimizes disk head
movement.

9/16

Input/Output scheduler

 CFQ
possible management priority process

 ionice -c class -n priority -p program
 iorenice -c class -n priority -p PID

 Priority class
 - 1 - Real time – [0-7]
 - 2 - Best Effort – [0-7] - default (2 class, priority 4)
 - 3 - Idle

10/16

 Input/Output scheduler
(character by character reading a file size of 2 Gb)

11/16

ionice
(CFQ,
nice in x-axis)
(-20, 19)

default
(CFQ, nice = 0)

deadline
(2 processes,
in 1 line)

noop
(2 processes,
in 1 line)

Memory paging

12/16

Linux System memory is
organized as pages of the
volume of 4K.

If the memory is completely
depleted, the OS will look for a
long time unused memory
pages to move them from
memory to disk. If any of these
pages is required, Linux restore
them from disk.

Huge pages

4 Kb – the size of standard memory pages.

2 Mb (x86) or 4 Mb (x86_64) – the size of huge page memory.

1) array 4 Mb = 4 Kb * 1024 pages

 or 4 Mb = 2 Mb * 2 pages

2) TLB (Translation Lookaside Buffer) – buffer that caches the last
several transformations of memory addresses.

The advantages of using huge pages:

 + fewer pages required to allocate.

 + search in the TLB is faster (as TLB caches the few conversions)

13/16

Huge pages. Results
(Copy memory from the input of the output, 500 Mb)

Gain on
huge pages:

 5 %

14/16

Work at the kernel space
Linux. Memory Architecture

 * ”Linux Performance and Tuning Guidelines”, IBM Redpaper
15/16

 *

Conclusions

● Getting the win without interfering with the code of

the programs is not possible (increasing the priority
of our process to the scheduler reduces the
interactivity of the other processes).

● On the example of huge pages shows that the gain
of 5% can take place.

● Kernel space and DMA: future work.

16/16

Thank you for your attention!

Questions?

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17

