Low-complexity video compression based on 3-D DWT and fast entropy coding

Evgeny Belyaev

Tampere University of Technology Department of Signal Processing, Computational Imaging Group

April 28, 2011

Evgeny Belyaev (TUT)

Video coding based on 3-D DWT

April 28, 2011 1 / 13

b 4 = b

Problem definition

Scalable video coding (SVC) is the most preferable compression method for video transmission over wireless networks with time-varying bandwidth and packet losses.

Scalable video stream includes several layers:

- *base layer* is always coded independently and provide basic visual quality with low bit-rate.
- enhancement layers provide refinement quality and higher bit rate.

Scalable video stream provides:

- robust transmission due to unequal error protection of different layers¹;
- bandwidth adaptation due to dropping the higher enhancement layers².

²Y.P. Fallah, H. Mansour, S. Khan, P. Nasiopoulos, H.M. Alnuweiri, "A Link Adaptation Scheme for Efficient Transmission of H.264 Scalable Video Over Multirate WLANs", 2008.

¹M.Gallant and F. Kossentini, "Rate-distortion optimized layered coding with unequal error protection for robust Internet video", 2001.

Problem definition

Currently the most popular scalable video coding approach is an extension of the H.264/SVC standard¹ which provides high compression efficiency due to motion compensation and inter-layer prediction. But, because of high computational complexity of these methods, implementation of H.264/SVC encoder in a mobile device is a difficult task.

As an alternative the scalable video coding based on three-dimensional discrete wavelet transform $(3-D DWT)^2$ have been proposed. This approach

- do not use motion estimation,
- but has highly complex entropy encoder.

3-D DWT codec complexity can be further decreased by development of the new low-complexity entropy coding methods.

 $^1{\rm H.}$ Schwarz, D.Marpe, and T.Wiegand, "Overview of the Scalable Video Coding Extension of the H.264 / AVC Standard", 2007.

²B.J. Kim, Z. Xiong, and W. A. Pearlman, "Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)", 2000.

3-D DWT based video compression algorithm includes:

- Spatial two-dimensional discrete wavelet transform;
- One-dimensional discrete wavelet transform in temporal direction;
- Quantization of wavelet coefficients;
- Bit-plane entropy encoding of each wavelet matrix.

Two-dimensional discrete wavelet transform

Evgeny Belyaev (TUT)

Video coding based on 3-D DWT

April 28, 2011 5 / 13

L-levels two-dimensional discrete wavelet transform

For each frame we have $(3 \times L + 1)$ wavelet matrix.

Evgeny Belyaev (TUT)

Video coding based on 3-D DWT

April 28, 2011 6 / 13

Discrete wavelet transform in temporal direction

We accumulate n frames (group of frames, GOP) and calculate wavelet transform in temporal direction.

Video coding based on 3-D DWT

Thus, for each GOP we have $(3 \times L + 1) \times n$ wavelet matrix. Evgeny Belyaev (TUT)

April 28, 2011 7 / 13 Bit-plane entropy encoding of a wavelet matrix

- Quantity of non-zero bit-planes Q is compressed.
- Bit-planes are compressed starting from bit-plane Q 1.
- All bits in each bit-plane are scanned from left to right and from top to bottom.

Evgeny Belyaev (TUT)

Bit-planes compression

• Each wavelet coefficient X has 8 neighbors which can be significant or insignificant. At the beginning all coefficients are insignificant.

D_0	V_0	D_1
H_0	X	H_1
D_2	V_1	D_3

- If current coefficient and all neighbors are insignificant:
 - ▶ if current bit is 0, then zero-run counter N is increased by 1,
 - ▶ if current bit is 1, then zero-run counter N is compressed by Levenstein code and set to N = 0.
- If at least one neighbor coefficient is significant and current coefficient is insignificant, then current bit is placed into output bit stream without compression.
- If at steps 1 or 2 current bit was 1, then current wavelet coefficient X is placed into output bit stream without compression and become significant.

Evgeny Belyaev (TUT)

Zero-run compression by Levenstein codes

For compression of zero-run $\underbrace{000..0}_{N}$ 1, value N is represented by two parts:

Part 1:

$$\underbrace{ \begin{array}{c} \text{binary representation of } c \\ \lfloor \log_2(\log_2 N_{max}) \rfloor + 1 \text{ bits} \end{array} },$$

where

$$c = \begin{cases} 0, \text{ if } N = 0\\ \lfloor \log_2 N \rfloor + 1, \text{ if } N > 0, \end{cases}$$

 N_{max} is maximum possible zero-run value.

2 Part 2: (if $c \ge 2$)

$$\underbrace{\frac{binary \ representation \ of \ N-2^{c-1}}{c-1 \ bits}}_{c-1 \ bits}$$

10 / 13

Practical results

Codec	Description		
x.264 ¹	The fastest software implementation ² of		
	H.264/AVC encoder (in <i>-ultrafast</i> mode)		
3-D SPIHT ³	3-D DWT codec implementation with entropy en-		
	coder with 3-D set partitioning in hierarchical		
	trees ⁴ proposed by W. A.Pearlman		
3-D DWT	3-D DWT codec implementation with bit-plane en-		
Arithmetic	tropy encoder based on binary adaptive range coder		
	and context modeling in JPEG2000 style.		
3-D DWT	3-D DWT codec implementation with bit-plane en-		
Levenstein	tropy encoder based on Levenstein codes		

¹http://www.videolan.org/developers/x264.html

²http://compression.ru/video/codec_comparison/

³http://ipl.rpi.edu/research/SPIHT/spiht3.html

⁴B.J. Kim, Z. Xiong, and W. A. Pearlman, "Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)", 2000.

Evgeny Belyaev (TUT)

Rate-Distortion comparison¹

Computation complexity comparison¹

¹All results were obtained for C-code software implementations without assemblers, GPU optimization etc. for processor Intel Core 2 Duo 3.6 GHz (\bigcirc) (\bigcirc) (

vgeny Belyaev (TUT)	Video coding based on 3-D DWT	April 28, 2011 13 / 1
---------------------	-------------------------------	-----------------------