Monitoring and Prediction of Transport Protocols Throughput for Complex Networks

Aleksandr Sannikov, Olga Bogoiavlenskaia, Iurii Bogoiavlenskii

Petrozavodsk State University Department of Computer Science

9th FRUCT Conference, April 24–29, Petrozavodsk, Russia

Table of Contents

- 2 Key Concepts of the System
- 3 Deep Look on the Prediction System
- 4 Tests and Data Analysis

Aim of work

Prediction of throughput to several hostsSelection of host according to results of prediction

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Use Cases

Peer-to-Peer Networks

Content Delivery Networks

Grid Computing

Sac

FRUCT 24-29.04.2011 5 / 19

æ

Performance

Requirements to modern networks:

Performance

- Availability
- Reliability
- Security

Common performance metrics:

- Throughput
- Delay
- Loss rate

3 + 4 = 4

Measurement

Active

- Additional workload
- We always have metrics
- Time for initial measurement

Passive

- Needs data interchange
- Information already exists

Per-flow aggregated information

Extraction of information directly from TCP implementation

- Deep integration with TCP/IP stack
- Linux-oriented system
- Location:
 - End hosts
 - Intermediate hosts (if necessary)
 - One side

- E

Hi-Level Architecture

- Scalability
- Extensibility
- Four subsystem according to RFC 2722 (Traffic Flow Measurement: Architecture)
 - Probe
 - Collector
 - Manager
 - Analyzer

- E

Probe

Subsystem for extraction of information about TCP-flows from OS kernel.

- Kernel-space and User-space components
- Stability
- Large volume of data for transmission from Kernel to user space
- Low latency
- Low number of changes in kernel

3 1 4 3

Collector

Subsystem for storage and preprocessing of information about network performance.

- Hight performance
- Processing of big data flow "on fly"
- Long term data storage in well-detailed form
- Per-flow aggregation

Structures and Data Types

GetTCP

Ponomarev V. A., Bogoyavlenskaya O. Yu., Bogoyavlenskiy Yu. A. Configurable Kernel-Level Monitoring System of the TCP Behavior "Information Technologies", issue 1 2010.

Aleksandr Sannikov

Prediction of Throughput

FRUCT 24-29.04.2011 13 / 19

Architecture of Probe and Collector

Aleksandr Sannikov

FRUCT 24-29.04.2011 14 / 19

Analyzer

The tool is targeted to end-user. Implements final data analysis and performance forecasting. Also it generates report in user-acceptable form.

- High level of "intelligence" in contrast to other subsystem
- Platform independence
- Well accuracy
- Different types of analysis

Approaches in Data Analysis

Formula-based

- Easy for estimation
- Small amount of input data
- Gives expectation of throughput

History-based

- A lot of estimation model (MA, EWMA, Holt-Winters etc.)
- Needs heuristics for detection of outliers and level shifts

Testbed

- Testing and debugging of system
- Empty channel testing
- Constant-rate background traffic

 Constant-rate background traffic in bottleneck

3 1 4 3

"Live" network traffic

< Al

Conclusion

Results:

- Architecture of system
- Ability to use whole methods of time series analysis
- Implemented prototype
- Testing of prototype in testbed

Aims:

- Improvement of system
- More tests in different conditions
- Improvement of mathematical models for prediction

Thank you

Sac

Aleksandr Sannikov

Prediction of Throughput

FRUCT 24-29.04.2011 19 / 19

æ

문 🕨 🖈 문