
Cross-platform software development in practice.
Object-Oriented approach.

Vitaly Repin
Maemo Devices, Nokia

Maemo

March 25, 2010

(Maemo) Cross-platform software development. March 25, 2010 1 / 20

mailto:vitaly.repin@nokia.com


It’s life...

(Maemo) Cross-platform software development. March 25, 2010 2 / 20



Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 3 / 20



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 4 / 20



What are they doing there?

(Maemo) Cross-platform software development. March 25, 2010 5 / 20



Why cross-platform?

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

(Maemo) Cross-platform software development. March 25, 2010 6 / 20



OK. Let’s hope these boys know where they are...

(Maemo) Cross-platform software development. March 25, 2010 7 / 20



The typical steps

(Maemo) Cross-platform software development. March 25, 2010 8 / 20



Too far view can be misleading. But in the same time the
distance is needed to see the “big” picture

(Maemo) Cross-platform software development. March 25, 2010 9 / 20



Technological landscape analysis

This phase is extremely important (and extremely difficult and risky)
if your aim is to make an application which is prepared for the
FUTURE. And this is the usual story in the modern word...

What technologies are used?

What APIs are used?

What is going to be changed in the forecastable future? E.g., UI
tends to change more often then backends. Typically. But
everything depends on the project!

Try to be Cassandra for the destiny of the technologies and APIs
your application uses. What is their future? Use all the available
information - insider’s knowledge, expert’s opinions, keep an eye
on the researching projects. You shall be aware of the university
activities in order to be prepared for the technology switch.

Try to forecast. To predict the future.

(Maemo) Cross-platform software development. March 25, 2010 10 / 20



Cross-platform enablers

Divide the (future) application into the packages.

Put the portability requirements towards every package. E.g.,
“package A shall be portable to every system which has gcc and
glibc”, “package B shall be portable to every system which has
Qt core libraries”, “package C will be reimplemented for every
system. APIs shall be carefuly designed”.

Keep in mind - stricter portability requirements mean more
efforts to implement specific component.

The risk — to make the architecture more complex than needed. To
reinvent glibc.

(Maemo) Cross-platform software development. March 25, 2010 11 / 20



Step 4. Define the basic architecture

Isolate the dependencies through internal APIs (set of classes)

Document in the paper the most critical architectural decisions
(including portability requirements towards each component)

Agree on the basic architecture with your team and other experts
you can reach. This is important step as it allows to find teh
design problems in the very early phase. Even before the
development starts! Never sit in the “architectural ivory tower”!

e If needed, make a prototype. It shall be FAST prototyping. It
can not take “1 man month”. But it depends on the project as
always!

(Maemo) Cross-platform software development. March 25, 2010 12 / 20



Step 6. Start of the (iterative) application development

Start the development based on the architecture agreed with the
team

Architecture is not a dogma. It could be changed if the
development shows that it does not suit the business needs

Regulary check that your application is really portable. Just build
it for 2 platforms at least. And run the unit tests.

(Maemo) Cross-platform software development. March 25, 2010 13 / 20



Don’t be afraid! Just do!

(Maemo) Cross-platform software development. March 25, 2010 14 / 20



Qt Messaging framework. Introduction.

Cross-platform (Linux, MacTM, MaemoTM, MS WindowsTM)
C++ middleware to build email clients, and more generally
software that interacts with messaging servers.

Based on Qt

Platform-dependent stuff is isolated in the corresponding classes
which can have different implementation for different platforms.

Extensible by protocol and content storage plugins. E.g., plugin
to access your messages box in social network, can be easily
developed

Open-sourced: http://qt.nokia.com/doc/status/qdoc-
output/public-messagingframework/html/

(Maemo) Cross-platform software development. March 25, 2010 15 / 20

http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/
http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/


Technologies

APIs: networking (including SSL), SQL (sqlite), file access,
synchronization primitives. Use through Qt classes whenever it is
possible.

Documentation system: qdoc3 (as in Qt)

Portability: all the major desktop platforms. Designed with being
cross-platform in mind. Shall be easily ported to future computer
platforms.

(Maemo) Cross-platform software development. March 25, 2010 16 / 20



Define the basic architecture

(Maemo) Cross-platform software development. March 25, 2010 17 / 20



Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 18 / 20

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Iterative application development

The architecture was constantly changing with the project
evolution but the major architecture ideas are still valid

New capabilities were added to the plugins APIs during the QMF
evolution

It was possible to port QMF to desktop and mobile platforms
with different software architectures.

Remember: THE ONLY CONSTANT IS CHANGE!

(Maemo) Cross-platform software development. March 25, 2010 19 / 20



Thanks a lot for your attention! Any questions?

vitaly.repin@nokia.com
(Maemo) Cross-platform software development. March 25, 2010 20 / 20

mailto:vitaly.repin@nokia.com

	Outline
	Abstract
	What are you talking about?
	Why?
	How?
	Step 4. Define the basic architecture

	Real-life example. QMF

