
Cross-platform software development in practice.
Object-Oriented approach.

Vitaly Repin
Maemo Devices, Nokia

Maemo

March 25, 2010

(Maemo) Cross-platform software development. March 25, 2010 1 / 37

mailto:vitaly.repin@nokia.com


Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 2 / 37



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Development of portable software is engineering work. This is
not a piece of cake but software engineer CAN DO this work and
enjoy it!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 3 / 37



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Development of portable software is engineering work. This is
not a piece of cake but software engineer CAN DO this work and
enjoy it!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 3 / 37



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Development of portable software is engineering work. This is
not a piece of cake but software engineer CAN DO this work and
enjoy it!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 3 / 37



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Development of portable software is engineering work. This is
not a piece of cake but software engineer CAN DO this work and
enjoy it!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 3 / 37



Abstract

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change.

How to be prepared for the changes? Is it possible to predict the
future? Yes, to some extent...

Don’t be afraid! There are technologies around which will help
you. But there is no silver bullet. Use your brain and common
sense to win!

Development of portable software is engineering work. This is
not a piece of cake but software engineer CAN DO this work and
enjoy it!

Qt and C++ are your friends. But use them wisely. THERE IS
NO SILVER BULLET.

(Maemo) Cross-platform software development. March 25, 2010 3 / 37



Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 4 / 37



What is happening there?

(Maemo) Cross-platform software development. March 25, 2010 5 / 37



Definition

“In computing, cross-platform, or multi-platform, is an
attribute conferred to computer software or computing
methods and concepts that are implemented and
inter-operate on multiple computer platforms.
Cross-platform software may be divided into two types; one
requires individual building or compilation for each platform
that it supports, and the other one can be directly run on
any platform without special preparation.”

Wikipedia

(Maemo) Cross-platform software development. March 25, 2010 6 / 37

http://en.wikipedia.org/wiki/Cross-platform


Example

“For example, a cross-platform application may run on
Microsoft Windows on the x86 architecture, Linux on the
x86 architecture and Mac OS X on either the PowerPC or
x86 based Apple Macintosh systems. A cross-platform
application may run on as many as all existing platforms, or
on as few as two platforms.”

Wikipedia

(Maemo) Cross-platform software development. March 25, 2010 7 / 37

http://en.wikipedia.org/wiki/Cross-platform


Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 8 / 37



What are they doing there?

(Maemo) Cross-platform software development. March 25, 2010 9 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



Why cross-platform?

Write once, run anywhere

The technologies around are changing very rapidly

The basic foundations of your software are changing all the time.
The real challenge: The only constant is change. Yes, Diogenes
Laertius is very actual in the XXI century!

e Money talks: it is all about the cost of application
maintenance and development of the new features

e Quality: it is cheaper (in terms of bugs) to port the existing
code to the new platform than to write new application from
scratch with the same functionality

e Development speed: it is faster to port the existing code to
the new platform than to write new application with the same
functionality

(Maemo) Cross-platform software development. March 25, 2010 10 / 37



You probably DON’T need to develop cross-platform
application if...

Lifecycle of your application is really short

The software you develop makes sense for the only and very
unique hardware in the earth

e Business decision: to develop only for the selected platform.
No future is planned

(Maemo) Cross-platform software development. March 25, 2010 11 / 37



You probably DON’T need to develop cross-platform
application if...

Lifecycle of your application is really short

The software you develop makes sense for the only and very
unique hardware in the earth

e Business decision: to develop only for the selected platform.
No future is planned

(Maemo) Cross-platform software development. March 25, 2010 11 / 37



You probably DON’T need to develop cross-platform
application if...

Lifecycle of your application is really short

The software you develop makes sense for the only and very
unique hardware in the earth

e Business decision: to develop only for the selected platform.
No future is planned

(Maemo) Cross-platform software development. March 25, 2010 11 / 37



You probably DO need to develop cross-platform
application if...

One of your business requirements is to support more than one
computer platform

The lifecycle of your application lasts longer than the
technologies it is based on. You know that in 1 year from now
the primary computer platform for your application will be
different from the current one. Your application shall be prepared
and investments of your company shall be protected by the
engineering decisions you are making

(Maemo) Cross-platform software development. March 25, 2010 12 / 37



You probably DO need to develop cross-platform
application if...

One of your business requirements is to support more than one
computer platform

The lifecycle of your application lasts longer than the
technologies it is based on. You know that in 1 year from now
the primary computer platform for your application will be
different from the current one. Your application shall be prepared
and investments of your company shall be protected by the
engineering decisions you are making

(Maemo) Cross-platform software development. March 25, 2010 12 / 37



Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 13 / 37



OK. Let’s hope these boys know where they are...

(Maemo) Cross-platform software development. March 25, 2010 14 / 37



The tools

Variety of tools is available:

Java

Scripting languages: perl, python, ruby, ...

“Classical” compilers: C, C++, Pascal, Haskell (GHC), ...

Let us focus on the third approach and discuss the C++ way in depth.

(Maemo) Cross-platform software development. March 25, 2010 15 / 37



The tools

Variety of tools is available:

Java

Scripting languages: perl, python, ruby, ...

“Classical” compilers: C, C++, Pascal, Haskell (GHC), ...

Let us focus on the third approach and discuss the C++ way in depth.

(Maemo) Cross-platform software development. March 25, 2010 15 / 37



The typical steps

(Maemo) Cross-platform software development. March 25, 2010 16 / 37



Step 1. e Define the business goals

What is the business logic of your application?

Define the (high-level) content, most important business
requirements

What features of the product you develop are unique compared
with the competing products?

What are the portability requirements? Is the business ready to
invest resources into the portability?

(Maemo) Cross-platform software development. March 25, 2010 17 / 37



Step 2. Technological market analysis

What is available in the market (including open-source free
”market”) RIGHT NOW?

What technologies are available to build the product?

The main question which shall be answered in this step — What can
be reused in order to build the product without reinventing the
wheel?

The most dangerous risk here is to miss the existing technologies or
products and reinvent the wheel. The end-result can be total loss of
the money invested. And your own life time which is even more
important!

(Maemo) Cross-platform software development. March 25, 2010 18 / 37



Step 2. Technological market analysis

What is available in the market (including open-source free
”market”) RIGHT NOW?

What technologies are available to build the product?

The main question which shall be answered in this step — What can
be reused in order to build the product without reinventing the
wheel?

The most dangerous risk here is to miss the existing technologies or
products and reinvent the wheel. The end-result can be total loss of
the money invested. And your own life time which is even more
important!

(Maemo) Cross-platform software development. March 25, 2010 18 / 37



Step 3. Select the technologies

The helpful questions:

What are the APIs my application will use?

What tools (compilers, debuggers, documentation tools, toolkits
etc) shall be used?

How portable are the technologies my application will be based
on?

(Maemo) Cross-platform software development. March 25, 2010 19 / 37



Step 3. Select the technologies

The helpful questions:

What are the APIs my application will use?

What tools (compilers, debuggers, documentation tools, toolkits
etc) shall be used?

How portable are the technologies my application will be based
on?

(Maemo) Cross-platform software development. March 25, 2010 19 / 37



Step 3. Select the technologies

The helpful questions:

What are the APIs my application will use?

What tools (compilers, debuggers, documentation tools, toolkits
etc) shall be used?

How portable are the technologies my application will be based
on?

(Maemo) Cross-platform software development. March 25, 2010 19 / 37



Too far view can be misleading. But in the same time the
distance is needed to see the “big” picture

(Maemo) Cross-platform software development. March 25, 2010 20 / 37



Technological landscape analysis

This phase is extremely important (and extremely difficult and risky)
if your aim is to make an application which is prepared for the
FUTURE. And this is the usual story in the modern word...

What technologies are used?

What APIs are used?

What is going to be changed in the forecastable future? E.g., UI
tends to change more often then backends. Typically. But
everything depends on the project!

Try to be Cassandra for the destiny of the technologies and APIs
your application uses. What is their future? Use all the available
information - insider’s knowledge, expert’s opinions, keep an eye
on the researching projects. You shall be aware of the university
activities in order to be prepared for the technology switch.

Try to forecast. To predict the future.

(Maemo) Cross-platform software development. March 25, 2010 21 / 37



Technological landscape analysis

This phase is extremely important (and extremely difficult and risky)
if your aim is to make an application which is prepared for the
FUTURE. And this is the usual story in the modern word...

What technologies are used?

What APIs are used?

What is going to be changed in the forecastable future? E.g., UI
tends to change more often then backends. Typically. But
everything depends on the project!

Try to be Cassandra for the destiny of the technologies and APIs
your application uses. What is their future? Use all the available
information - insider’s knowledge, expert’s opinions, keep an eye
on the researching projects. You shall be aware of the university
activities in order to be prepared for the technology switch.

Try to forecast. To predict the future.

(Maemo) Cross-platform software development. March 25, 2010 21 / 37



Technological landscape analysis

This phase is extremely important (and extremely difficult and risky)
if your aim is to make an application which is prepared for the
FUTURE. And this is the usual story in the modern word...

What technologies are used?

What APIs are used?

What is going to be changed in the forecastable future? E.g., UI
tends to change more often then backends. Typically. But
everything depends on the project!

Try to be Cassandra for the destiny of the technologies and APIs
your application uses. What is their future? Use all the available
information - insider’s knowledge, expert’s opinions, keep an eye
on the researching projects. You shall be aware of the university
activities in order to be prepared for the technology switch.

Try to forecast. To predict the future.

(Maemo) Cross-platform software development. March 25, 2010 21 / 37



Technological landscape analysis

This phase is extremely important (and extremely difficult and risky)
if your aim is to make an application which is prepared for the
FUTURE. And this is the usual story in the modern word...

What technologies are used?

What APIs are used?

What is going to be changed in the forecastable future? E.g., UI
tends to change more often then backends. Typically. But
everything depends on the project!

Try to be Cassandra for the destiny of the technologies and APIs
your application uses. What is their future? Use all the available
information - insider’s knowledge, expert’s opinions, keep an eye
on the researching projects. You shall be aware of the university
activities in order to be prepared for the technology switch.

Try to forecast. To predict the future.

(Maemo) Cross-platform software development. March 25, 2010 21 / 37



Cross-platform enablers

Divide the (future) application into the packages.

Put the portability requirements towards every package. E.g.,
“package A shall be portable to every system which has gcc and
glibc”, “package B shall be portable to every system which has
Qt core libraries”, “package C will be reimplemented for every
system. APIs shall be carefuly designed”.

Keep in mind - stricter portability requirements mean more
efforts to implement specific component.

(Maemo) Cross-platform software development. March 25, 2010 22 / 37



Cross-platform enablers

Divide the (future) application into the packages.

Put the portability requirements towards every package. E.g.,
“package A shall be portable to every system which has gcc and
glibc”, “package B shall be portable to every system which has
Qt core libraries”, “package C will be reimplemented for every
system. APIs shall be carefuly designed”.

Keep in mind - stricter portability requirements mean more
efforts to implement specific component.

(Maemo) Cross-platform software development. March 25, 2010 22 / 37



Cross-platform enablers

Divide the (future) application into the packages.

Put the portability requirements towards every package. E.g.,
“package A shall be portable to every system which has gcc and
glibc”, “package B shall be portable to every system which has
Qt core libraries”, “package C will be reimplemented for every
system. APIs shall be carefuly designed”.

Keep in mind - stricter portability requirements mean more
efforts to implement specific component.

(Maemo) Cross-platform software development. March 25, 2010 22 / 37



Analisys

Do a classical object-oriented decomposition keeping portability
requirements in mind

Carefully analyze the dependencies your application has. What
applications layers can be changed in future? Try to be
Cassandra.

The risk — to make the architecture more complex than needed. To
reinvent glibc.

(Maemo) Cross-platform software development. March 25, 2010 23 / 37



Analisys

Do a classical object-oriented decomposition keeping portability
requirements in mind

Carefully analyze the dependencies your application has. What
applications layers can be changed in future? Try to be
Cassandra.

The risk — to make the architecture more complex than needed. To
reinvent glibc.

(Maemo) Cross-platform software development. March 25, 2010 23 / 37



Step 4. Define the basic architecture

Isolate the dependencies through internal APIs (set of classes)

Document in the paper the most critical architectural decisions
(including portability requirements towards each component)

Agree on the basic architecture with your team and other experts
you can reach. This is important step as it allows to find teh
design problems in the very early phase. Even before the
development starts! Never sit in the “architectural ivory tower”!

e If needed, make a prototype. It shall be FAST prototyping. It
can not take “1 man month”.

(Maemo) Cross-platform software development. March 25, 2010 24 / 37



Step 5. (Optional) Make Proof-of-Concept.

Prototype your application. Try the most risky design ideas!

The goal is to check that the creative ideas suggested in the
previous step really work well.

(Maemo) Cross-platform software development. March 25, 2010 25 / 37



Step 6. Start of the (iterative) application development

Start the development based on the architecture agreed with the
team

Architecture is not a dogma. It could be changed if the
development shows that it does not suit the business needs

Regulary check that your application is really portable. Just build
it for 2 platforms at least. And run the unit tests.

(Maemo) Cross-platform software development. March 25, 2010 26 / 37



Step 6. Start of the (iterative) application development

Start the development based on the architecture agreed with the
team

Architecture is not a dogma. It could be changed if the
development shows that it does not suit the business needs

Regulary check that your application is really portable. Just build
it for 2 platforms at least. And run the unit tests.

(Maemo) Cross-platform software development. March 25, 2010 26 / 37



Step 6. Start of the (iterative) application development

Start the development based on the architecture agreed with the
team

Architecture is not a dogma. It could be changed if the
development shows that it does not suit the business needs

Regulary check that your application is really portable. Just build
it for 2 platforms at least. And run the unit tests.

(Maemo) Cross-platform software development. March 25, 2010 26 / 37



Outline

1 What are you talking about?

2 Why?

3 How?
Step 4. Define the basic architecture

4 Real-life example. QMF

(Maemo) Cross-platform software development. March 25, 2010 27 / 37



Don’t be afraid! Just do!

(Maemo) Cross-platform software development. March 25, 2010 28 / 37



Qt Messaging framework. Introduction.

Cross-platform (Linux, MacTM, MaemoTM, MS WindowsTM)
C++ middleware to build email clients, and more generally
software that interacts with messaging servers.

Based on Qt

Platform-dependent stuff is isolated in the corresponding classes
which can have different implementation for different platforms.

Extensible by protocol and content storage plugins. E.g., plugin
to access your messages box in social network, can be easily
developed

Open-sourced: http://qt.nokia.com/doc/status/qdoc-
output/public-messagingframework/html/

(Maemo) Cross-platform software development. March 25, 2010 29 / 37

http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/
http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/


Qt Messaging framework. Introduction.

Cross-platform (Linux, MacTM, MaemoTM, MS WindowsTM)
C++ middleware to build email clients, and more generally
software that interacts with messaging servers.

Based on Qt

Platform-dependent stuff is isolated in the corresponding classes
which can have different implementation for different platforms.

Extensible by protocol and content storage plugins. E.g., plugin
to access your messages box in social network, can be easily
developed

Open-sourced: http://qt.nokia.com/doc/status/qdoc-
output/public-messagingframework/html/

(Maemo) Cross-platform software development. March 25, 2010 29 / 37

http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/
http://qt.nokia.com/doc/status/qdoc-output/public-messagingframework/html/


The business goals

Messaging subsystem engine. The reference message type is
“e-mail”

Shall make it possible to integrate the new 3-party (!) protocols
into the subsystem

Easy to use, object–oriented

Shall make it possible to store the messages in the different ways
(databases, files of different formats and so on)

Portability requirements: the same as for Qt

(Maemo) Cross-platform software development. March 25, 2010 30 / 37



The business goals

Messaging subsystem engine. The reference message type is
“e-mail”

Shall make it possible to integrate the new 3-party (!) protocols
into the subsystem

Easy to use, object–oriented

Shall make it possible to store the messages in the different ways
(databases, files of different formats and so on)

Portability requirements: the same as for Qt

(Maemo) Cross-platform software development. March 25, 2010 30 / 37



The business goals

Messaging subsystem engine. The reference message type is
“e-mail”

Shall make it possible to integrate the new 3-party (!) protocols
into the subsystem

Easy to use, object–oriented

Shall make it possible to store the messages in the different ways
(databases, files of different formats and so on)

Portability requirements: the same as for Qt

(Maemo) Cross-platform software development. March 25, 2010 30 / 37



The business goals

Messaging subsystem engine. The reference message type is
“e-mail”

Shall make it possible to integrate the new 3-party (!) protocols
into the subsystem

Easy to use, object–oriented

Shall make it possible to store the messages in the different ways
(databases, files of different formats and so on)

Portability requirements: the same as for Qt

(Maemo) Cross-platform software development. March 25, 2010 30 / 37



The business goals

Messaging subsystem engine. The reference message type is
“e-mail”

Shall make it possible to integrate the new 3-party (!) protocols
into the subsystem

Easy to use, object–oriented

Shall make it possible to store the messages in the different ways
(databases, files of different formats and so on)

Portability requirements: the same as for Qt

(Maemo) Cross-platform software development. March 25, 2010 30 / 37



Technological market analysis

Historical retrospective (several years ago)

Qt is in place and contains a lot of reusable classes to implement
the backend

No e-mail protocol backend implementation available for reuse

Relational database can be used to store email headers and
implement effective local search through the messages databases

(Maemo) Cross-platform software development. March 25, 2010 31 / 37



Select the technologies

APIs: networking (including SSL), SQL (sqlite), file access,
synchronization primitives. Use through Qt classes whenever it is
possible.

Documentation system: qdoc3 (as in Qt)

Portability: all the major desktop platforms. Designed with being
cross-platform in mind. Shall be easily ported to future computer
platforms

(Maemo) Cross-platform software development. March 25, 2010 32 / 37



Select the technologies

APIs: networking (including SSL), SQL (sqlite), file access,
synchronization primitives. Use through Qt classes whenever it is
possible.

Documentation system: qdoc3 (as in Qt)

Portability: all the major desktop platforms. Designed with being
cross-platform in mind. Shall be easily ported to future computer
platforms

(Maemo) Cross-platform software development. March 25, 2010 32 / 37



Select the technologies

APIs: networking (including SSL), SQL (sqlite), file access,
synchronization primitives. Use through Qt classes whenever it is
possible.

Documentation system: qdoc3 (as in Qt)

Portability: all the major desktop platforms. Designed with being
cross-platform in mind. Shall be easily ported to future computer
platforms

(Maemo) Cross-platform software development. March 25, 2010 32 / 37



Define the basic architecture

(Maemo) Cross-platform software development. March 25, 2010 33 / 37



Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 34 / 37

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 34 / 37

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 34 / 37

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 34 / 37

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Define the basic architecture

Run-time executable: messageserver

Mechanism to support 3-party protocols: plugins loadable into
the messageserver in runtime

Clear separation between UI and backend

Use the C++ PIMPL idiom to encapsulate the
platform-dependent stuff. Make porting efforts easier for the
maintainers

Use the Model/view paradigm to separate data and
representation

(Maemo) Cross-platform software development. March 25, 2010 34 / 37

http://www.gotw.ca/publications/mill04.htm
http://doc.trolltech.com/4.6/model-view-programming.html


Iterative application development

The architecture was changing with the project evolution but the
major architecture ideas are still valid

New capabilities were added to the plugins APIs during the QMF
evolution

It was possible to port QMF to desktop and mobile platforms
with different software architectures.

(Maemo) Cross-platform software development. March 25, 2010 35 / 37



Iterative application development

The architecture was changing with the project evolution but the
major architecture ideas are still valid

New capabilities were added to the plugins APIs during the QMF
evolution

It was possible to port QMF to desktop and mobile platforms
with different software architectures.

(Maemo) Cross-platform software development. March 25, 2010 35 / 37



Iterative application development

The architecture was changing with the project evolution but the
major architecture ideas are still valid

New capabilities were added to the plugins APIs during the QMF
evolution

It was possible to port QMF to desktop and mobile platforms
with different software architectures.

(Maemo) Cross-platform software development. March 25, 2010 35 / 37



Thanks a lot for your attention!

Thank you!

(Maemo) Cross-platform software development. March 25, 2010 36 / 37



Questions?

vitaly.repin@nokia.com
(Maemo) Cross-platform software development. March 25, 2010 37 / 37

mailto:vitaly.repin@nokia.com

	Outline
	Abstract
	What are you talking about?
	Why?
	How?
	Step 4. Define the basic architecture

	Real-life example. QMF

