WiMAX technology: PHY simulation challenges

Alexander Sayenko, Senior Research Engineer (Nokia-NRC/Helsinki)

Agenda

- Brief introduction into the WiMAX technology
- WiMAX PHY levels
- New IEEE 802.16m standard
- Simulating the WiMAX technology
- Simulation challenges: bridging the MAC/PHY gap

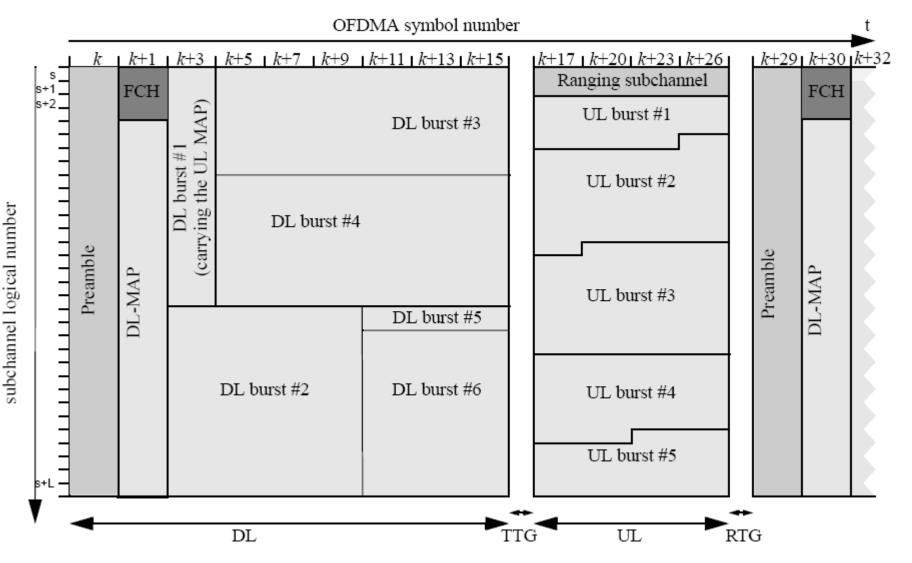
Main features the IEEE 802.16 WiMAX

- LOS and NLOS operations
- Large coverage
- High performance
- Set of MCSs to adapt to link conditions
- Support for a variety of services
- Support for a variety of link-level technologies through a sophisticated convergence sublayer
- Support for the mobility (latest standards)

WiMAX PHY levels

- SC
 - The first WiMAX PHY level
 - Single-carrier PHY
 - Suitable for LOS operations, but no proper support for NLOS deployment

• OFDM


- 256 subcarriers per an OFDM symbol
- Works in NLOS scenarios
- Suitable for fixed subscriber stations
- Supports Mesh mode, i.e., ad-hoc networking
- Optionally, supports subchannelization (simplified form of OFDMa)

OFDMa

- Similar to the OFDM PHY
- The number of subcarriers depends on the configuration (up to 2048)
- Unlike OFDM, subcarriers are grouped into the logical subchannels
- Optimized for mobility

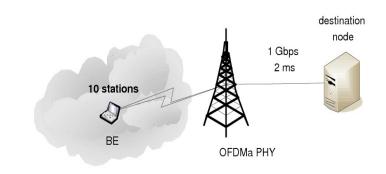
WiMAX OFDMa frame structure

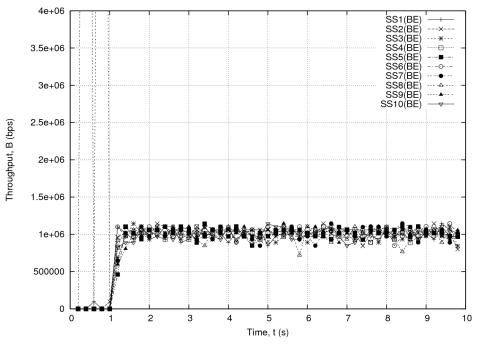
Key IEEE 802.16 specifications

- 802.16d (2004)
 - Defined OFDM and OFDMa PHYs
 - Targets the fixed deployment scenarios
 - No proper support for mobility
- 802.16e (2005)
 - Extensions to the OFDM and OFDMa PHYs
 - MAC and PHY extensions to support mobility
- 802.16m (under development)
 - Currently, there are only requirements
 - Core areas:
 - Reduced complexity
 - Support for new services, E-MBS, LBS
 - Support for advanced antenna techniques (MIMO) and beamforming
 - New performance requirements
 - New mobility and coverage requirements

IEEE 802.16m tasks and challenges

- Must be backward compatible with IEEE 802.16e standard
- Functional requirements:
 - Peak data rate: > 6.5 bps/Hz, double the relative performance!
 - Max latency (both uplink and downlink): 10 ms
 - Handover interruption time: 50-150 ms
- Mobility functional requirements:
 - Low (0-15 km/h), high (15-120 km/h), highest (120-350 km/h)
 - Should support IEEE 802.21 Media Independent Handover
- Coverage:
 - Optimized (up to 5 km), graceful degradation (5-30 km), functional system (30-100 km)
- Multi-hop relay networks




Sample simulation scenario

PHY	OFDMa
Bandwidth	10Mhz
FFT	1024
Cyclic prefix length	1/8
TTG+RTG	232 PS
Duplexing mode	TDD
Frame duration	5 ms
OFDM symbols	47
DL/UL symbols	26/21
DL/UL subcarrier alloc.	DL FUSC/UL PUSC
DL/UL slots	416/245
MCS	64-QAM3/4 (27B/slot)

Fragmentation/packing	ON
PDU size	as large as possible
CRC/ARQ	ON
ARQ feedback	standalone
ARQ block size	16 B
ARQ window	1024
ARQ block rearrangement	ON

8 © 2007 Nokia 2007-05-21 / Alexander Sayenko

NOKIA Connecting People

PHY simulation challenges

- Low-level simulators
 - Sophisticated PHY modeling
 - Quite poor support for MAC and upper level protocols modeling
 - It is possible to implement them, but
 - ... it requires too much human work hours
 - Need a significant amount of computational resources
- High-level network simulators
 - NS-2, OpNet
 - Provide libraries with transport and high-level protocols
 - If something is missing, it can be added easily
 - Much faster when compared to the low-level simulators
 - Support for PHY modeling is quite poor
 - It is possible to model PHY accurately, but
 - ... it will be too slow

Bridging the MAC/PHY gap

- It is crucial to simulate accurately PHY in the high-level simulator
 - It does not diminish the value of the low-level simulator, but rather
 - Allows for achieving more accurate performance results
- Simulation models used in the low-level simulators:
 - They are too accurate
 - They require too much computational resources
- New PHY simulation models are need for:
 - Interference
 - MIMO
 - Subcarriers and logical subchannels

•

Collaborators

- Nokia Siemens Networks
- University of Jyväskylä, Finland,
 MIT department, Telecommunication laboratory
 - Development and support of the NS-2 WiMAX simulator
 - Research activities:
 - QoS and scheduling
 - MAC performance optimizations (e.g., ARQ, MAC overhead)
 - Adaptive contention resolution
- WiMAX Forum AATG group
 - Simulation methodology
 - Performance evaluation

Thanks for your attention!

