
1 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Advanced simulation tools on top of
SystemC
Finnish-Russian University Cooperation Program in
Telecommunications (FRUCT) seminar
Turku, Finland, Nov-07

Michel Gillet and Sergey Balandin
michel.gillet@nokia.com, sergey.balandin@nokia.com

CTC Computing Structure, Architecture Solutions,
Nokia Research Center

2 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Outline

• Embedded networks
• Protocol modeling
• Our experience with SystemC
• Protocol modeling with SystemC
• Beyond SystemC
• Conclusions

3 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Embedded
networks

4 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Remark

• These slides assume prior knowledge of the presentation
“Embedded networks” by the same authors shown earlier in this
FRUCT seminar

5 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Chip #2Chip #2

Die #5Die #5 Die #6Die #6

Die #4Die #4Chip #1Chip #1

Die #2Die #2 Die #3Die #3

Die #1Die #1

Ultimate goal

• A embedded network technology to simplify integration by
abstracting away the chip and die boundaries

• 4 signal PINS, Gbit/s rates, low power, low EMC/EMI, can be pure hardware

Device #4

Device #6Application
Processor

#3

Graphics
Coprocessor

#5

CTC-N CTC-N

switch

CTC-N

Device #1

Device #2

switch

6 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Protocol modeling

7 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Protocol modeling

• Protocols are classically described in layered model based on the
OSI stack or any variant

• Since protocols can be very complex, modeling has always been at
the very center of protocol design

• When speaking about protocol modeling, there are essentially 3
main approaches or goals :

• Formal verification
• Protocol design, exploration of protocol and their features
• Performance evaluation

• And 2 classes of languages used:
• Formal languages
• Programming languages

8 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Formal verification

• Formal verification of protocol is pretty much a science of its own,
almost black magic for many

• As its name indicates, the goal of such modeling is to find a formal
proof (a mathematical proof) of the correctness of a protocol

• There are many aspects of protocol correctness:
• Deadlock free
• Livelock free
• Behavioral completeness (closure)
• Etc.

• Of course, this is very important for standardization, but not
optimum for protocol engineering and design

9 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Formal verification languages

• This topic has been studied for so many years, that there is quite
few different tools for formal verification

• Most of these tools are language based:
• SDL
• LOTOS
• SPIN
• UUPAAL
• Etc.

• Their main drawback for protocol engineering in embedded network
is their rigidity, their formal nature, which makes them inadequate
for performance analysis or “protocol engineering”

10 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Network simulator

• Another approach for protocol modeling is simply to take any
programming language and build a so called “network simulator”

• These simulators are of course not suitable for formal verification,
• But tailored made for protocol engineering, performance analysis,

comparison of different technical solutions, etc.
• They have extensive libraries of ready made protocols, tools for

visualizing results and/or behavior, traffic generators, traffic sinks,
often tools for statistical analysis, etc.

• The most famous is of course NS-2

11 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

NS-2 and embedded networks

• Embedded networks are by definition and by area of application
pretty far from the TCP/IP world

• They are aggressively optimized for low power, low complexity, etc.
• NS-2, being strongly IP oriented, doesn’t fit naturally to embedded

networks
• Furthermore, we were interested in technologies supporting QoS

very low in the protocol stack, simply for efficiency
• We can’t reuse much of the existing models provided in NS-2 and

we would need to create almost from scratch all layers

12 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Programming languages

• The only alternative left for us was to choose a classical
programming language, like C or C++, etc.

• The obvious issue is that they don’t have any support for protocol
modeling, particularly they don’t have a notion of time

• Of course, some libraries for network simulation exists, but they are
all either only supporting TCP/IP family of protocols, either are more
generic but would require to model everything from scratch

13 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

SystemC – base platform of our simulators
• SystemC is “free” C++ based library (www.systemc.org)
• Comparing to pure C++, the SystemC library provides a set of C++

classes to represent time, includes a event-driven simulator, etc.
• SystemC has various levels of abstraction
• SystemC was already used internally for evaluation of ASIC

architecture, chip design, co-design and co-simulation, etc.
• SystemC has become the de facto standard for system modeling
• Many tool vendors were supporting SystemC and it was really easy

to include it in the VHDL design flow
• Conclusion: SystemC is well fitting our needs as the base platform

for network simulator covering high abstraction level and at the
same time we can be very close to hardware when needed

14 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Our experience
with SystemC

15 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

SpaceWire & our own solution

• From the requirements for an embedded network solution and after
analysis of various existing protocols, SpaceWire was clearly the
best match

• So naturally, we build a SpaceWire protocol simulator to evaluate
its performance

• This work was essential for us to learn how SystemC could be best
used for protocol modeling

• But more important, it showed us clearly the limitations of SystemC
for such a purpose

• All what we learned was use for building the protocol of our own
proprietary embedded network

16 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Experience and learnings

• SystemC modeling of the complete architecture gives unique
understanding of the system

• Especially important for system optimization when power, protocol efficiency
and costs are hard constrains

• It is important to invest time in creating modeling test bench
• The test benches made to test the protocols can be easily reused to test

hardware implementation

• Modeling a complete system including software is straightforward
and offers very efficient simulations

• This way of working has been adopted and used in multi-company
and multi-site environment

• First in Nokia and later introduced in MIPI UniPro standardization WG

17 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Protocol modeling
with SystemC

18 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Layered protocol design

• All embedded networks we designed and are designing follows the
same basic layering defined by OSI

• We also use the concept of SAP
• Basic primitives we use

• Request and Confirm(_L)
• Indication and Response

Transport (L4)

Data Link (L2)

Network (L3)

PHY (L1)

C
on

tro
l P

la
ne

N-SAP

D-SAP

P-SAP

P
-L

M

S
AP

D
-L

M

SA
P

N
-L

M

SA
P

T-
LM

S

A
P

CTRL
SAP T-SAP

Receive blocking call

Sent blocking call

Layer n+1 Layer n
.request

.confirm

Layer n+1

.indication

.response

.request

.confirm

.indication

.response

Sent

Receive

19 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

• We have chosen the “blocking calls” since it reduce the number of
interfaces and the number of processes needed by half.

SystemC modeling of SAPs

Layer n

Layer n+1
TX RX

RX TX
Layer n

Layer n+1
TX RX

RX TX

Blocking calls Split transactions

20 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

SystemC limitations (1/2)

• SystemC was designed in a way, which make it virtually easily
usable only by experts

• It makes the embedded models created with SystemC usable only
to very specialized individuals

• In SystemC, a class called sc_module is used to define the
common behavior of every single logical block in a model

• To try to mitigate this issue, we have created a derivate class of
sc_module called up_module which allows us

• To create model factories
• Change the implicit hierarchical architecture of the SystemC models based

on the model names to an explicit hierarchical architecture

21 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

SystemC limitations (2/2)

• If all logical block in the models are themselves derivate class from
up_module, a complete SystemC embedded network model can be
instantiated and configured from a XML file

• It also allows the replacement of many manual tasks caused by
SystemC semantic, by automated mechanisms completely
transparent to the user of the models

• Allows replacement of a logic block in a hierarchical-tree model by automatic
binding of sc_ports without having to create new classes for all its parent
leafs up to the root of the tree

• Enable simpler scripting
• Python, Perl, etc.

22 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Beyond SystemC

23 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Our modification of SystemC –
mySystemC (1/2)
• We started with SystemC 2.0.1 and identified the following issues:

• No good support for latest GCC compiler
• No support for shared library under Unix/Linux
• No support for dynamic link libraries under windows
• Not as platform independent as we needed

• A first set of modifications were attempted to solve those issues
• but couldn’t be carried out because some other issues appeared

• The main setbacks were
• The original SystemC library had some code that made impossible creation

of DLLs
• The source code was not always perfectly C++ OSI compliant

24 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Our modification of SystemC –
mySystemC (2/2)
• A new class was added in SystemC to replaces the sc_main

• sc_main is a macro using the class SystemC

• Use libtool under Unix for building static and shared library
• Too strict usage of private members which hinders customization:

changes made to allow different sc_sim_context implementation,
interactive scheduler, etc.

• SystemC 2.0.1, 2.1 and 2.2 are supported

• Available soon for download from:
http://www.hamletg.org/mambo/index.php?option=com_content&tas
k=view&id=24&Itemid=32

25 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Speeding up development – Python &
SystemC
• To simplify and speed up design of test benches for complex

system, all the models are scripted in python
• pymySystemC is a python module, which exposes the C++ classes

of SystemC through python
• For creating SystemC python module we used SWIG

• SWIG (http://www.swig.org/) is an open source project
• SWIG is a software development tool that connects programs written in C

and C++ with a variety of high-level programming languages

• SystemC 2.0.1, 2.1 and 2.2 are supported

• Available soon for download from:
http://www.hamletg.org/mambo/index.php?option=com_content&tas
k=view&id=19&Itemid=32

26 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Graphical extension – e.g. visualization of
results
• Matplotlib

• http://matplotlib.sourceforge.net/

• Network Animator (NAM)
• Is distributed as a part of NS-2
• http://www.isi.edu/nsnam/nam/

• Graphical interface
• wxWidgets (http://www.wxwidgets.org/)
• wxPython (http://www.wxpython.org/)

27 © 2007 Nokia Advanced simulation tools on top of SystemC v0.1.ppt / 2007-11-08 / MG

Conclusions
• Even if SystemC was not designed specifically for building network simulators, it

provides very good base platform for building embedded network simulators
• It has been proven by very good experience of using SystemC based simulator for

internal and MIPI standardization activities

• Our study has shown that the following is useful for large SystemC models:
• Add support for DLL and shared library in the official releases
• Use of explicit hierarchy of sc_module, then creates the sc_module_name hierarchy
• The current way is troublesome when using model factories, XML description of

complete systems to be simulated, etc.

• Use of listed additional open source libraries and tools allow building complete
toolset on top of SystemC for embedded network simulator, SoCs, NoCs, etc.

• For making your platform successful it is extremely important to use tools for
speeding up creation of the test scenarios and for graphical presentation of results

• It is important to invest time in creating modeling test benches

