\langle

UNIVERSITY OF JYVÄSKYLÄ

Optimal MAC PDU Size in IEEE 802.16

Henrik Martikainen, Olli Alanen, Vitaliy Tykhomyrov

Alexander Sayenko

Telecommunication laboratory, MIT department, University of Jyväskylä, Finland

Nokia Research Center, Finland

Outline

- Background
- Optimal PDU size without ARQ block rearrangement
- Optimal PDU size estimation with different error rates
- Simulation results for rearrangement
- Simulation results for PDU size
- Conclusions

Background

- Wireless channel, errors are always present and the error probability varies much
- Optimal PDU size selection problem Bigger MAC PDUs have less MAC header overhead Bigger PDUs are more prone to packet drops
- Also absence of ARQ block rearrangement might limit the optimal PDU size

ARQ (Automatic Repeat Request)

- ARQ mechanism informs errors so erroneous ARQ blocks can be retransmitted
- ARQ block rearrangement feature makes possible to fragment PDUs before retransmissions

ARQ (Automatic Repeat Request) block rearrangement

- Assume that PDU to be retransmitted is larger than given bandwidth and rearrangement is not supported Sending is not possible are bandwidth is wasted
- Therefore if rearrangement is not supported:

PDU size < Average burst size

Optimal PDU size on different error rates

- Bigger MAC PDU -> Less MAC header overhead
- Bigger PDU -> More likely to contain errors
- We assume some FEC block error rate (FEC BLER)
- Simple equation to estimate efficiency:

$$Efficiency = \frac{S}{L}(1-E)^{\frac{L}{B}}$$

Throughput estimation = Efficiency * Bandwidth

S = User bytesL = PDU length E = FEC BLER B = FEC Block size

Optimal PDU size

Theoretical efficiency for different BLER values

Optimal PDU size

- Optimal PDU size should be smaller when there are more errors in the channel
- When then are more errors, big PDUs give bad results
- Small PDUs (~100 bytes) give quite good results in all cases
 100
 BLER 10⁻¹

 \langle

Simulation Environment

WINSE (WImax NS-2 Extension) for NS-2 was used
 FTP application over TCP/IP

Parameter	Value
PHY / Bandwidth	OFDMa / 10 Mhz
FFT	1024
Cyclic prefix length	1/8
TTG+RTG	464 PS (0.082857 ms)
Duplexing mode	TDD
Frames per second	200 (5 ms per frame)
OFDM symbols	47
DL/UL symbols	26/21
MCS	16-QAM1/2 (12 bytes/slot)
FEC block size	3 slots (36 bytes)
Ranging transm. opportunities	2
Ranging backoff start / end	2/15
Request transm. opportunities	8
Request backoff start / end	4/15
Fragmentation / packing	ON / ON
CRC / ARQ	ON/ON
ARQ feedback / ARQ types	Standalone / all
ARQ block size / ARQ window	16 bytes / 1024
ARQ block rearrangement	ON
ARQ retry timeout / block lifetime	40 ms / 300 ms

Rearrangement Simulation results

Total uplink data for 10/25 SS, rearrangement on/off.

If rearrangement disabled, the MAC PDU should be Less than 300 B for 10 SS (average burst ~ 300 B) Less than 120 B for 25 SS (average burst ~ 120 B)

Optimal PDU size Simulation results

Comparison between theoretical model and simulation results

Optimal PDU size Simulation results

- Efficiency formula and simulation results have the same optimal PDU size
- Efficiency formula overestimates throughput, not all overhead is taken into account

Conclusions

- If rearrangement is not supported, PDU size should less than average burst size
- Presented efficiency equation can be used to estimate the optimal PDU size, if information of the FEC BLER can be obtained
- If PDU size is fixed, the PDU should be small