Rate-Distortion control for H.264/AVC in video compression systems with memory restriction

Ann Ukhanova St. Petersburg University of Aerospace Instrumentation

Rate Control

Rate control guarantees that the resulting image size is not higher than the given threshold value

Rate Control algorithm in H.264

Main idea: choose Q_t so that $b(t) \approx B'$

Problem: $r(Q_t)$ can't be computed in advance before encoding and can be only predicted

- Buffer filling up
 - the quantization step size in the encoder is increased which increases the compression factor and reduces the output bit rate
- Buffer starts to empty
 - the quantization step size is reduced which reduces compression and increases the output bit rate

Hypothetical Reference Decoder

Transmission system with preliminary compression

Depending on the channel rate decoder chooses the initial start-up delay according to the information about pairs (R_{min} , B_{min}) received from the encoder

Real-time compression and transmission system

 $b(t) = \max\{0, b(t-1) - r\} + r(Q_t),$

where b(t) – number of bits in the buffer at time moment t, r – channel rate

Problem statement

- System of video compression and transmission (based on H.264/AVC)
 - small memory consumption at transmitter/receiver (256x16)
 - single video frame 1024x768, 25 Fps

Resume: No motion compensation, only Intra frames

Goal: provide the acceptable level of quality for video sequence for a given channel throughput

Delay requirements

$$\Delta T = \Delta T_e + \Delta T_{eb} + \Delta T_c + \Delta T_{db} + \Delta T_d$$

$$\Delta T_{e} = \Delta T_{d} = \frac{1}{Fps \cdot N} \qquad \begin{cases} B^{e}_{\max} = B^{d}_{\max} = L \cdot r \\ \Delta T_{eb} + \Delta T_{c} + \Delta T_{db} = L \end{cases} \qquad \begin{cases} b^{e}(t) \leq B^{e}_{\max} \end{cases}$$

Delay values for H.264

PSNR fluctuations for H.264

Proposed RD-control

Optimization task (for all tiles):

$$\begin{cases} minimize \max_{t} d(Q_{t}) \\ b(t) \leq B_{0} \end{cases},$$

where $b(t) = \max\{0, b(t-1) - r\} + r(Q_t),$

Proposed algorithm

12

Original vs. proposed algorithms

JPEG2000

H.264/AVC

Summary

- H.264 original Rate Control algorithm is good for transmission scheme with preliminary compression
- For real-time compression and transmission another approaches should be used

Other papers on this theme

- *F. Jelinek*, "Buffer Overflow in Variable Length Coding of Fixed Rate Sources", IEEE Transactions on Information Theory, vol. IT-14, No. 3, May 1968
- A.R. Reibman, "Constraints on Variable bit-rate Video for ATM Networks", IEEE Transactions on circuits and systems for video technology, vol.2, No. 4, December 1992
- *C.-Y. Hsu, A. Ortega, M.Khansari*, "Rate Control for Robust Video Transmission over Burst-Error Wireless Channels", IEEE Journal on Selected Areas in Communications, vol. 17, No. 5, May 1999