JPEG-LS Standard and efficient power management for wireless video transmission

Eugeniy Belyaev, Andrey Turlikov, <u>Ann Ukhanova</u>

Saint-Petersburg State University of Aerospace Instrumentation

Problem statement

 Future 802.15.3 [60GHz init] Wireless Display will use it for video transmission Video transmission – primary usage model Low Complexity Costs 	 WD HDTV 1080p Resolution 1920x1080x60 fps Real Time video with minimum delay (<60ms) Low Complexity Costs
Future 802.15.3 is ready for HDTV 1080p video!	

WHY additional lossless compression is needed ?

Problem statement

Lossless Wireless Display: 802.15.3 & HDTV 1080p & JPEG-LS

Future 802.15.3 [60GHz init]

- Wireless Display will use it for video transmission
- Video transmission primary usage model
- Low Complexity Costs
- Transmission Rate < 4 Gbps</p>

WD HDTV 1080p+ JPEG-LS

- Resolution 1920x1080x60 fps
- Real Time video with minimum delay (<60ms)
- Low Complexity Costs
- Rate ~0.3 1.5 Gbps

JPEG-LS Lossless video compression decreases power consumption !

WHY JPEG-LS ?

Compression rate: JPEG-LS vs. JPEG2000 vs. H.264/AVC(Intra)

Compression rate: JPEG-LS vs. JPEG2000 vs. H.264/AVC(Intra)

JPEG-LS provides the same compression rate with much smaller level of implementation complexity¹

¹Diego Santa Cruz and Touradj Ebrahimi, A study of JPEG 2000 still image coding versus other standards. Published in the proceedings of EUSIPCO 2000

JPEG-LS: brief description

Quality vs. compression ratio

Test sequences: "Desktop"

Computer and synthetic graphics

"Desktop" Original

"Desktop" Compression ratio = 5

Test sequences: "Golf"

Photorealistic image

"Golf" Original

"Golf" Compression ratio = 5

Graphs for "Desktop"

Graphs for "Golf"

Lossy factor vs. subsampling: artefacts

• CR = 10

Lossy factor = 0, subsampling 0.5 0.5

Conclusion

- Compression ratio 2-5 times for future 802.15.3 [60GHz init]
- JPEG-LS provides necessary CR and high quality of the reconstructed image with low complexity
- Different ways how to adjust JPEG-LS for time-varying wireless channel

Research plans

- JPEG-LS Tiny with very low complexity
- Static detector

Thank you!

Hongseok Kim, Gustavo de Veciano, "Leveraging Dynamic Spare Capacity in Wireless Systems to Conserve Mobile Terminals' Energy"