Security in Embedded Networks

Elena Reshetova Nokia Research Center Helsinki Michel Gillet Nokia D R&D CT ASD PSD Connectivity SD

Finnish-Russian University Cooperation Program in Telecommunications (FRUCT) seminar Tampere, Finland, Oct-08

Background: Embedded Networks

- EN interconnects IPs
- IPs are low-level devices provided by different vendors
- Special IP CCM
 - Initialization
 - Reconfiguration
- Expected EN configuration
 - IPs ~ 20, Routers ~ 8
 - ~ 4 ports per routers
 - Link speed ~ 1-5Gb/s

Summary of the previous report

- We made a literature study and analysis of current security situation in EN
- We identified the closest network types for EN and made an comparative analysis of their features
- We analyzed attacks and security solutions for these networks
- First thoughts were made about KM and Authentication
- We had an open question: Has EN the same vulnerabilities as considered networks?

Answering the question

Has Embedded Networks the same vulnerabilities?

- Which vulnerabilities?
- What is need to be done to fix them?
- Cases
 - IP compromised
 - Router compromised

IP vulnerabilities

- IP contains software
 - uploading or fetching from central memory
 - interaction with other application level software
- IP is purely hardware
 - configuration protocol usage
- In case if IP is compromised
 - Misbehavior
 - M-i-t-M
 - DOS attacks
 - Livelocks, deadlocks, flooding

Example - flooding

Example – Man in the Middle

Compromised router

- By external protocols
 - configure protocol to set routing table
 - upload firmware protocol
 - upload some content in its execution memory

Compromised router - 2

- By internal software
 - gain access to some operation on the bus
 - change routing table, states
 - code executed by the CPU of the router

More possibilities for the attacks

- Some embedded networks have a link to the external word
 - USB-like connector going out of the mobile device
 - Wireless extension of the network

Message authentication

Message Authentication

- We need to authenticate about 128 bits
- Speed should be about 2-4Gbits/s
- Complexity of the hardware implementation should be reasonable
 - CBC-based MACs
 - HMACs
 - Carter-Wegman MACs
 - CRC-based MAC

- Block cipher encryption
 - ALES-known cipher
- SHA^{Block} size and key size should be minimal
- UMAC, PMAC
 - They all come to block encryption

Message Authentication – 3

- GHASH
 by D.McGrew and J. Viega.
 - X + Y addition over 2^w
 - X * Y multiplication over 2^w

 $Y1 = X1 *H \mod 2^w$

 $Y1 = X1 *H \mod 2^w xor K$

Conclusions

Conclusions

- Embedded network does have secure vulnerabilities
 - Parts of the network can be compromised
 - Compromised parts can make an successful attacks
- Security should be taken into account during the design phase
 - Proper security solutions should be found for
 - Message authentication
 - Key management
 - Encryption

Conclusions - 2

- Complex security analysis should be done for the network, but also for the endpoints
- "Using encryption on the Internet is the equivalent of arranging an armored car to deliver credit card information from someone living in a cardboard box to someone living on a park bench."
 - Gene Spafford

Thank You & Questions

Contact information

Email: Elena.Reshetova@nokia.com

