Self-organized Synchronization in Wireless Network

Jiang Yu and Olav Tirkkonen

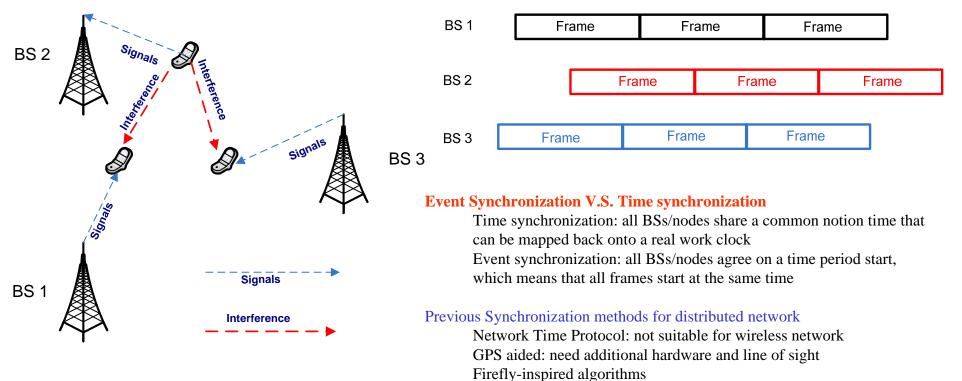
Department of Communications and Networking Helsinki University of Technology (TKK)

Contents

- Problems
- System model
- Firefly inspired algorithm
- Circular averaging with random selection method
- Simulation results
- Conclusions

Problem

- The Local Area wireless network has the self-organized feature
 - No centralized controller which is able to decide everything
- Problem of no agreement for the timing of frame in TDD system
 - Each cell has different frame timing -> uplink and downlink signals are transmitted at the same time between adjacent cells -> high interference -> poor system performance
 - Resource information exchange, handover and resource allocation are difficult
- To solve this problem
 - All the frames of adjacent cells start almost at the same time
 - Need to find a self-organized synchronization method without centralized control



BS: Base Station

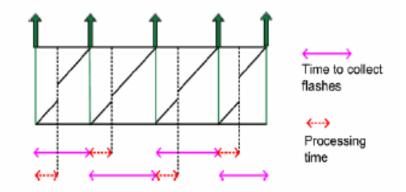
System model

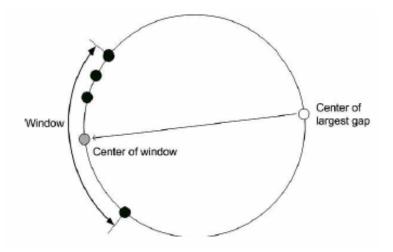
- Network model
 - Topology: regular square lattice
 - The set of BSs/nodes: S
 - Interaction with nearest neighbors, two way connection
 - Frame timing is modeled by phase variable, which is quantized into N time slots $\phi = 2\pi n/N$, n = 0, ..., N-1
 - All BSs have the same period of frame T
 - The phase variable fulfills a full circle from 0 to 2π , then jumps to 0
 - Reason to use time slot:
 - finite accuracy to measure the time difference among BSs
 - accurate property of synchronization algorithms
- Example

	6		1	,	1	-	1	-	1			_
	5 -	96	92	84	80	74	81	85	93	97	100	-
	4 -	89	73	65	53	48	55	67	76	91	99	-
	3-	71	59	41	33	28	35	43	61	78	95	-
	2 -	63	39	23	17	12	19	25	45	69	87	-
	1-	51	31	15	7	4	9	21	37	57	83	-
≻	0-	46	26	10	2	1	5	13	29	49	79	-
	-1 -	50	30	14	6	3	8	20	36	56	82	-
	-2 -	62	38	22	16	11	18	24	44	68	86	-
	-3 -	70	58	40	32	27	34	42	60	77	94	-
	-4 -	88	72	64	52	47	54	66	75	90	98	-
	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
	Х											

System model

- Timing exchange protocol
 - information is exchanged by 'firing'
 - May contain BS ID or not
 - Firefly-inspired
 - Circular averaging with random selection
 - Time for information collecting
 - Processing time (much smaller than T)
- Smallest window covering a set of points





Firefly-inspired algorithms

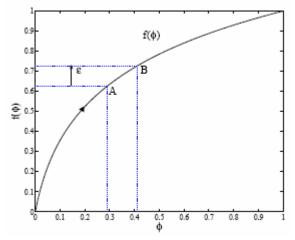
- Pulse coupled oscillator (PCO)
 - Mirollo and Strotagz proposed the model of connected PCO [1]
 - coupled differential equations

$$\dot{\phi}_i = \frac{1}{T} + \sum_{j \in \mathcal{N}_j} \left(\min \left[f^{-1}(f(\phi_i) + \epsilon), \ 2\pi \right] - \phi_i \right) \delta(\phi_j - 2\pi)$$

- $\phi_i \in [0, 2\pi]$ is periodic
- *T* is period of ϕ_i
- $f(\phi)$ is firing function, f > 0, $\dot{f} > 0$, and $\ddot{f} < 0$
- $\varepsilon > 0$ is a jump constant

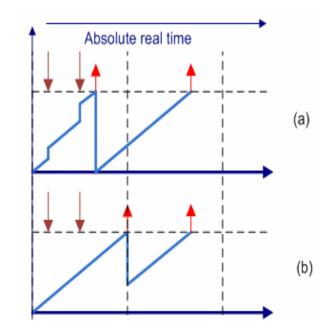
- To simplify, $f(\phi) = \ln(\phi)$, $\Delta \phi = f^{-1}(f(\phi_0) + \varepsilon) - \phi_0 = (e^{\varepsilon} - 1)\phi_0$

with Taylor expansion, $\Delta \phi = \varepsilon \phi_0$



Firefly-inspired algorithms

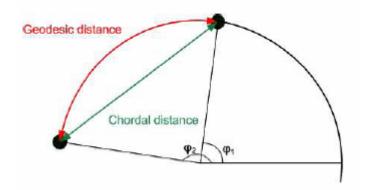
- ReachBack Firefly Algorithm (RFA) [2]
 - problems of previous model:
 - fully coupled network
 - no delay of firing information
 - RFA:
 - BS will not jump immediately after firing of its neighbor
 - collect all firings from previous time period
 - react all at once
 - can be implemented for fully coupled or only nearest connected network
 - Select \mathcal{E}
 - too large: 'overshoot' , preventing convergence
 - too small: speed of convergence is very slow
 - need to test to find the best choice



Circular averaging with random selection method

- Figures of merit
 - Metrics on the circle
 - Geodesic distance
 - Chordal distance
 - Considered norms of distance vector
 - one-norm (mean) $\|d\|_1 = \frac{1}{M} \sum_{j=1}^M d_j$
 - two-norm (RMS) $\|d\|_2 = \sqrt{\mathbf{d}^{\mathrm{T}}\mathbf{d}/M}$
 - infinite-norm (max) $\|d\|_{\infty} = \max_{j} (d_{j})$

Combine these 2 distances and 3 norms, we have a class of algorithms to average a set of circular numbers



8

Circular averaging with random selection method

- Randomized method
 - Group timings of neighbors
 - presence of group: at least 2 neighbors have same timing
 - Example: [1 30 46 85] no group
 - [1 30 30 85] 3 groups with size 1, 1 and 2
 - Allocate probabilities in terms of the size of group
 - Choose one group as new timing
- Circular averaging with random selection
 - if all neighbors have different timings (no group appears), use circular averaging; else use random group selection
 - choose randomly between circular averaging and pure randomized algorithm
- based on previous results, 6 algorithms are considered
 - Geodesic 2-norm with weighted group selection (Geo2R)
 - Geodesic inf-norm with weighted group selection (GeoInfR)
 - Chordal 2-norm with weighted group selection (Cho2R)
 - Random selection between Geodesic 2-norm and weighted group selection (RGeo2R): 90% for circular and 10% for group
 - Random selection between Geodesic inf-norm and weighted group selection (RGeoInfR)
 - Random selection between Chordal 2-norm and weighted group selection (RCho2R)

Simulation results

- Performance of combined algorithms and RFA
 - 100 nodes, 4 neighbors or 8 neighbors scenario
 - time slots N=1000 and 1000 periods to update
 - use 4 windows to investigate the accuracy: 1, 10, 50 and 100
 - for comparison reason, RFA is also tested

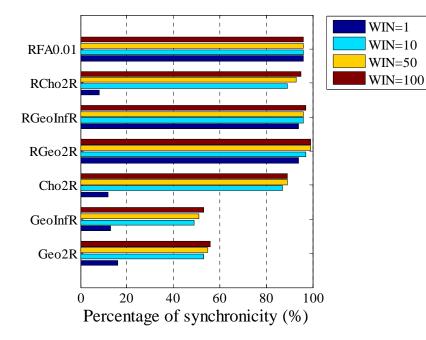
Table 1. Rate of synchronicity for RFA.

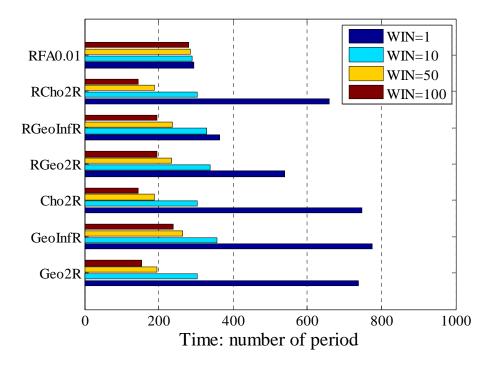
Neighbors	ε						
_	0.04	0.03	0.02	0.01	0.008		
4	93%	94%	95%	96%	92%		
8	99 %	99 %	100%	99 %	98 %		

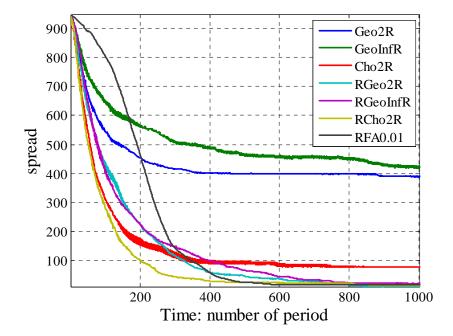
To get reasonable \mathcal{E} value, the percentages of synchrony for RFA are tested.

For 4 neighbors scenario, $\varepsilon = 0.01$

For 8 neighbors scenario, $\varepsilon = 0.02$

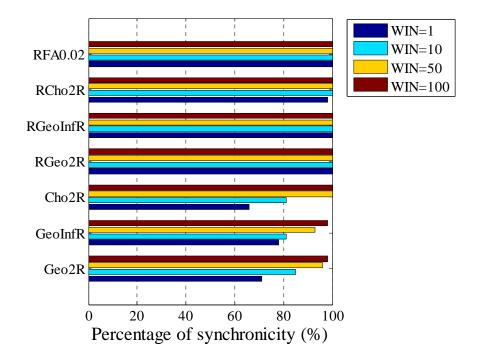


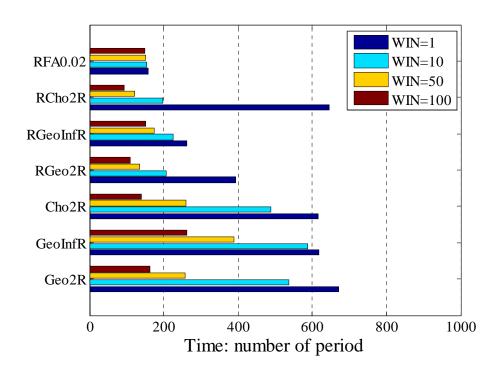


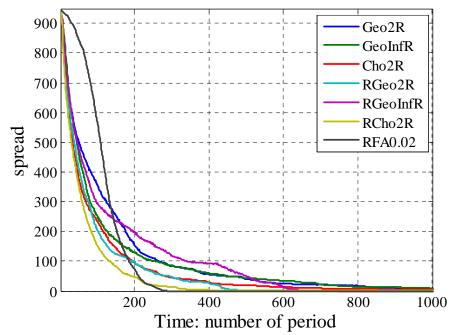


4 neighbors scenario

Proposed algorithms have better performance for gross accuracy: speed and percentage of synchrony



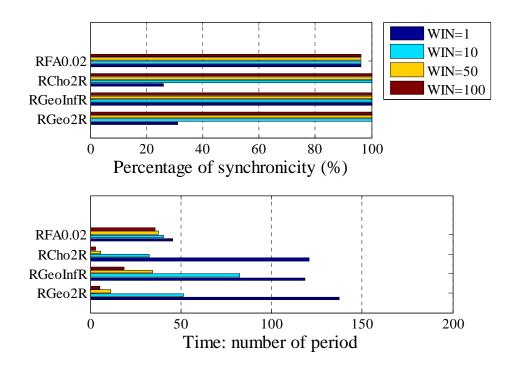




8 neighbors scenario

The more connected the network, the better of the performance

- Robustness against node addition
 - 8 neighbors, 100 BSs, N=1000
 - the number of joining BSs K is randomly selected from [1,10].
 Before addition, the other (100-K) BSs are already synchronized
 - RCho2R, RGeoInfR, RGeo2R and RFA 0.02 are tested
 - 200 periods are used for updating the system



Within 200 periods updating, RFA can not converge 100%.

RGeoInfR has the best performance

Conclusions

- For all algorithms, the more connected of the network, the better performance
- RFA needs to test jumping constant for different scenario or different topology
- The proposed circular averaging with random selection algorithms have better performance with gross accuracy (converge quickly)
- When new BSs join the system, the proposed algorithms are more robust
- The RFA may disturb all BSs in the system, while our algorithms just disturb neighbors
- RFA could be more sensitive to delay and missing of 'firing' information, while the proposed algorithms can just use the old information.
- Multiple avenues to improve the circular averaging with random selection algorithms can be seen: the probability to use random selection and the probability to choose each group can be optimized.

Reference

- [1] R. E. Mirollo and S. H. Strogatz. Synchronization of pulsecoupled biological oscillators. *SIAM J. Appl. Math.*, 50(6):1645–1662, Dec. 1990.
- [2] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sensor network synchronicity with realistic radio effects. In *Proc. SensSys*, 2005.