An Overview of Cross Layer Design & Optimization for Cognitive Radio Networks

Furqan Ahmed COMNET, TKK Nov 5, 2009

Agenda

- Motivation
- Cross Layer Approach for Wireless Networks
- Cross Layer Design for Cognitive Radio Networks
- Cross Layer Optimization for Cognitive Radio
 Networks
- Conclusions

Motivation: Why Cross Layer Design & Optimization

- Traditional Layered Design
 - Layers with definitions and tasks explicitly defined
 - Modularity
 - Standardization
- Possible Disadvantages?
 - Latency
 - Inefficiency

Cross Layer Approach for Wireless Networks

- Wireless networks
 - Rapid variations in channel
 - Fading, shadowing, mobility etc
 - Flexible architecture can take advantage of 'good' channel durations
- Cross layer Approach
 - Pass more information across layers
 - Blurring, changing or removing boundaries

Cross Layer Approach for Wireless Networks

- Different Cross Layer Architectures
 - Allow more information to flow upward or downward
 - Coupling of some of layers
 - Merging adjacent layers
- TCP over wireless links
 - Packet losses are always interpreted as effect of congestion in network.
 - Reason could be different like channel conditions etc.
 - Recently this problem has been solved by Explicit Congestion Notification, (ECN) mechanism[1]

Cross Layer Approach for Wireless Networks

- GPRS and EGPRS
 - GPRS: 4 different code rates between 0.5-1 according to channel quality
 - EGPRS: 2 different modulations with different coding rates
- Just having a Cross Layer Architecture is not sufficient!
 - Optimization
 - Adaptation

Cross Layer Design for Cognitive Radio Networks

- Cognitive Radio
 - Highly agile wireless platforms capable of autonomously choosing device parameters based on prevailing interference conditions

Cross Layer Design for Cognitive Radio Networks

- A cognitive network is a network with a cognitive process that can perceive the current network condition, and then plan, decide and act on those conditions.
- The network can learn from these adaptations and use them to make future decisions, all while taking into account the end-to-end goals

Cross Layer Design for Cognitive Radio Networks

- Cognitive Engine takes input from various sources sensing, overhead channels etc.
- Simultaneous optimization of multiple operating parameters across different OSI layers of device
- Each node has a cross layer optimization engine or cognitive engine
- Optimization based on a set of internal operating parameters across the different layers of wireless device in order to satisfy user requirements with as little resource as possible

	Layer	Parameters
on	\mathbf{RF}	Antenna powers
		Dynamic range
		Pre-distortion parameter
		Pre-equalization parameter
	Physical layer	Transmit power
		Digital modulation order
		Carrier frequency
		Operation bandwidth
		Processing gain
		Duty cycle
		Waveform
		Pulse shaping filter type
		FFT size (for OFDM)
		Cyclic prefix size (for OFDM)
	Data link layer	Channel coding rate
		Channel coding type
		Packet size
		Packet type
		Data rate
		Interleaving depth
		Channel/Slot allocation
		Carrier allocation (in multi-carrier systems)
		MAC scheduling algorithm
		Handover (Handoff)
		Number of slots
	Network	Routing algorithm/metric
		Clustering parameters
		Network scheduling algorithm
	Transport	Congestion control parameters
		Rate control parameters
	Upper	Communication modes (simplex, duplex, etc.)
		Source coding
		Encryption
		Service personalization

Some possible adaptation parameters[3]

- Optimization Problems
 - Finding a best possible solution from a set of solutions under given constraints
 - variables, objective functions and constraints
- General Form

Find x* which minimizes f(x)subject to $c_i \le X$, i = 1, 2, ..., rwith $m_j(x) = Y$, j = 1, 2, ..., h,

- Multiple layers and multiple parameters
 - Constraints are defined by cognitive engine according to the environment and other inputs
- Different approaches for optimization
 - Single objective function
 - Multiple objective functions
 - Midstep (single objective function but variables from different layers)

- Single objective optimization Find x* which minimizes f(x)subject to $c_i \le X$, i = 1, 2,...,rwith $m_j(x) = Y$, j = 1, 2,...,h,
- Multiple objective optimization Minimize $F(x) = [f_1(x), f_2(x)..., f_n(x)]$ subject to $c_i \le X$, i = 1, 2, ..., rwith $m_j(x) = Y$, j = 1, 2, ..., h,

• A midstep

between single objective and multiple objective optimization

 Single objective function but parameters from different layers[3]

- Enhancing performance of distributed cognitive radio network using a multiobjective formulation per cognitive radio node
 - Minimize BER, maximize throughput, minimize power usage and minimize interference with other nodes
 - Optimization function for one cognitive radio node is defined as[5]:
 - F(x)= $\sum_i w_i f_i(x)$ i€{P_e,TP, P, Int},

where P_e is the probability of bit error

TP stands for throughtput

P for transmission power and Int for interference.

Conclusions

- Limitations of layered architectures for wireless networks has motivated use of cross layer design
- Cognitive radio has an inherent relationship with cross layer architecture
- Cognitive engine has key role in cross layer optimization of cognitive radio networks
- Multiple Objective Optimization can be challenging with increase in number of objectives and constraints

Thanks

Questions/Comments

References

- 1. S. Shakkottai and Theodore S. Rappaport, Cross-Layer Design for Wireless Networks, IEEE Communications Magazine, October 2003.
- 2. P. Setoodeh and S. Haykin, Robust Transmit Power Control for Cognitive Radio, IEEE Proceedings, Vol. 97, No. 5, May 2009.
- 3. S. Chen, A M. Wyglinski, Efficient spectrum utilization via cross-layer optimization in distributed cognitive radio networks, Comut. Commun.(2009)
- 4. H. Arsalan, Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems, Springer (2007).
- 5. T.R. Newman, Multiple Objective Fitness Functions for Cognitive Radio Adaptation, Ph.D. Dissertation, University of Kansas, Lawrence, KS, 2008.
- 6. S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications (2005).
- 7. J. Mitola, The software radio architecture, IEEE Communications Magazine (1995).