
Trusted Mobile
Platforms
(a.k.a. hardware-assisted
platform security in

1 © 2009 Nokia FRUCT2009.ppt / J-EE

platform security in
handsets)
Jan-Erik Ekberg, Nokia Research Center

4.11 2009

Contents

• Introduction
• How do handsets differ from PC’s

• Business and usability motivators for security

• The TPM and MTM specifications

• [ObC – another approach to credentials]

• Conclusions

2 © 2009 Nokia FRUCT2009.ppt / J-EE

State-of-the art

A perimeter defence may be appropriate for well-managed network servers,
but for personal and embedded devices

- Security is not the user’s primary
interest

- The users’ administrative talent is
negligible

Traditional OS/system security approach is failing (always is…)

trojans

phishing

3 © 2009 Nokia FRUCT2009.ppt / J-EE

- The software is simply too complex
to be bug-free

while users’ are increasingly relying on advanced digital
services for everyday use

- Internet banking, payments, and ticketing

- Electronic voting

- wireless service packages with communication cost

- communication (VoIP, messaging, e-mail ß ISDN, fax and snail mail)

viruses

social
engineering

network
attacks

The (mobile) security legacy

The business environment has for years motivated handset
manufacturer’s to consider security from the ground up:

+ regulation, safety

+ operator binding

+ user expectation

- open SW platforms

- 3rd party development
vs.

TI M-shield,
ARM TrustZone;
Symbian capabilities …

4 © 2009 Nokia FRUCT2009.ppt / J-EE

whereas the PC industry (esp. laptops) has endorsed the
Trusted Platform Module (TPM) chips and standard by TCG

-> secure boot, mandatory access control, validated installation,
secure storage e.g. for radio parameters, secure execution environments

TPM

-> trusted boot, remote attestation, user privacy, key storage

Platform Security

• To achieve secure processing in heterogenous
environments, trust roots are needed

• Without enforcement, guarantees are hard
to give

• A good security infrastructure leaves room for
un-trusted components without sacrificing
overall security

• Compared to perimeter security, the trusted

Open
OS

OS with
MAC

applications

5 © 2009 Nokia FRUCT2009.ppt / J-EE

• Compared to perimeter security, the trusted
computing base is minimized

• Software vulnerability analysis is still an integral part
of the system, but not at run-time,
security is achieved by “updates only”.

• Privacy needs to be also guaranteed by policy, not
just by mechanism. This is common-place, e.g. in
communication networks.

Secure execution
environment for
credentials

HW support
- integrity
- secure storage
- secure processing
- isolated memories?

Security from a handset business perspective
• Platform Security is an enabler

• Required by
• Regulatory approval (for “open” platforms)

• IMEI lock / Subsidy lock (i.e., SIM-lock)

• Media consumption and protection (DRM)

• Confidential data management (user , corporation)

• Remote Attestation (RA) / Corporate access (VPN)

• Application authentication, authorization, accounting

6 © 2009 Nokia FRUCT2009.ppt / J-EE

• Application authentication, authorization, accounting

• Reliable PKI (key management, usage, etc)

• IMEI lock / Subsidy lock (i.e., SIM-lock)

• But also for
• Device stability

• Malware protection

• General trustworthiness of the platform

• Theft and copy “management”

• Starting point:
• 3rd party applications cannot be trusted.
• Not even the company’s “own” applications

• Applications want to feel free and have all the services / resources in their use.
Environment should be “open” (Java, VMs).

• Users should not be disturbed – they will not, and should not have to care. Also,

Security from a handset usability perspective

7 © 2009 Nokia FRUCT2009.ppt / J-EE

• Users should not be disturbed – they will not, and should not have to care. Also,
compared to PC users, handset users are on average far less computer-educated, and
are hampered by the limited (size) UI.

• Development and distribution of apps should be easy for “hobbyists”.

• Legacy systems and applications have to be supported due to overall digital
convergence (e.g. FAT filesystem on memory sticks, WLANs ..)

• For some / many services, the malicious adversary is the owner/user of the device.

Hardware security features (in mobiles)

8 © 2009 Nokia FRUCT2009.ppt / J-EE

Hardware security features (in mobiles)

Processing in embedded devices (typical)

vs.

P
C

Embedded intel
AMD
VIA
…

TI
Qualcomm
Samsung
Broadcom
ST / NXP
… X86-compatible processor

Processor with
ARM 7/9/11/Cortex A8
core(s)

Powerful auxiliary chipset
(North/Southbridge, TPM,
GPU, …)

Often mostly a SoC with
- 3G/GSM digital logic cores
- I/O support

- DSPs
“The processor” is standard
w.r.t. the integrator -> similarly

9 © 2009 Nokia FRUCT2009.ppt / J-EE

w.r.t. the integrator -> similarly
behaving products

Custom ASIC:s are common,
the integrator is part of the
design process.

Power management features are typically emphasized more on the embedded side

Processor clock speeds are typically 3-10 times higher on the PC side

(but in practice the digital convergence is eating away the differences and fast)

A plethora of security solutions in the embedded space
• Handsets have required HW security (due to openness)
since around 2001

• Even before that, embedded controllers had
security needs in industrial setting.

• Since the “penalty” of adding a new ASIC/chip only
for security is high both in tems of cost, battery and
real-estate, SoC- security solutions dominate.

Architecting a “ring-1” – solution for security within the
processor is not a new one.

10 © 2009 Nokia FRUCT2009.ppt / J-EE

processor is not a new one.
- Multics 6180 (sec. HW extensions) (1972)
- The Cambridge CAP computer (ca 1976)

The CAP computer
(Wikimedia)

SecureMSMTM

(QualComm)

VIA

To introduce the “typical” processor security setup, consisting of

a) Secure boot

b) Device secrets

c) a trusted execution environment
(sometimes achieved by virtualization)

11 © 2009 Nokia FRUCT2009.ppt / J-EE

let’s look at the security mechanisms in an incremental fashion …

The absolute basics (“accelerator” solution)

Main ASIC (trust perimeter)

Crypto
functions CPU core
DES/AES
SHA/MD5
HMAC/(RSA)

Static data

Verification key /
public key hash

Boot ROM

tftp/usb

Flash boot

ARM x

Assuming you have
1. on-chip ROM and
2. point the boot vector to it and
3. have the possibility to store a public key and
4. have the sign. verification algorithm handy

simply enforce signature checking on the first
piece of code you stumble upon. Fail = abort.

12 © 2009 Nokia FRUCT2009.ppt / J-EE

public key hash

Boot vector

Flash boot
+ signature check

(The ASIC typically also have other cores related to e.g. communication, but these are
ignored here)

Check signature

on the first thing you boot

piece of code you stumble upon. Fail = abort.

Important point: no secret info!!!

Come the eFUSEs…

• Main ASICs do not typically have enough
- voltage or
- silicon layers
to contain flash storage (re-writable non-volatile storage)

However, there is a technology originally by IBM called eFUSEs.

13 © 2009 Nokia FRUCT2009.ppt / J-EE

An eFUSE behaves exactly like a fuse in an electrical circuit, in can be “blown” by

a suitable SW invocation, and the value can thereafter be read.

• An array of, say 128 e-fuses forms a 16-byte value

• These values can be programmed at a factory

• These values fit on a 4-layer(?) ASIC and need no energy pumps

• The value could e.g. hold a SECRET key!

(See http://en.wikipedia.org/wiki/EFUSE)

The next-to-trivial (“hide the key” solution)

Main ASIC

Crypto
functions CPU core

DES/AES
SHA/MD5
HMAC/(RSA)

Static data

Verification key /
public key hash

Boot ROM

tftp/usb

Flash boot

ARM x

eFUSE key

Invoke key usage only by indexing

If you have a secret, it is of no value
if everybody can read it.

However, given an accelerator

- as a HW implementation
- directly wired to the crypto

we can transform the public information into

14 © 2009 Nokia FRUCT2009.ppt / J-EE

public key hash

Boot vector

Flash boot
+ signature check

Check signature

on the first thing you boot

we can transform the public information into
an oracle, which is much better

… and all kinds of semi-weird access control
protection system can be hardcoded in the
accelerator

Anything more already requires some thought

Main ASIC

Crypto
functions CPU core

DES/AES
SHA/MD5
HMAC/(RSA)

Static data

Verification key /
public key hash

ROM

tftp/usb

ARM x

eFUSE key

Invoke key usage only by indexing

Boot

A larger context is best explained in
context of ARM TrustZone, but that
architecture is by no means the first

We add some ROM and RAM with the
intention to make a secure execution
environment. Should we make this only
visible to processor privileged mode or

15 © 2009 Nokia FRUCT2009.ppt / J-EE

public key hash

Boot vector

Flash boot
+ signature check

Check signature

on the first thing you boot

RAM
Security
stuff

visible to processor privileged mode or
what???

No, not good enough…

- OS:es are also attacked (vulnerabilities)

- DMA is a problem, interrupt contexts
also

So we add a new processor mode for accessing
secure memory. How?

• Memory is typically addressed

• The address space could e.g. easily be extended by one more “HIGH” bit

• Maybe the MMU will only accept the “HIGH” bit when we are secure

• Maybe the secure ROM and RAM have addresses with the “HIGH” bit set

16 © 2009 Nokia FRUCT2009.ppt / J-EE

• If the processor core is not in our control (read ARM), then ‘x’ can be
controlled by external logic on the memory bus ..

MMUCORE
X

… and how do we control the access to set the new “secure
mode”?

Let’s define a unique entry point
- A new interrupt

- A memory address on on-chip ROM

On entry some magic happens
- we check entry constraints

- interrupts off?

- caches flushed?

Main ASIC

Crypto
functions CPU core

DES/AES
SHA/MD5
HMAC/(RSA)

Static data

Verification key /
public key hash

ROM

tftp/usb

ARM x

eFUSE key

Boot

17 © 2009 Nokia FRUCT2009.ppt / J-EE

- caches flushed?

-…

-On the secure side, we enforce a function interface (API),
maybe we can even upload signed code?

And only then we can access our precious,
precious memory. We are in a
Trusted Execution Environment (TrEE)

public key hash

Boot vector

Flash boot
+ signature check

Check signature

on the first thing you boot

RAM
Security
stuff

Entry vector

So we end up in a rough architecture like

Main ASIC

CPU core

Static data

Verification key /
public key hash

ROM

Boot vector

tftp/usb

ARM x

Boot

And with this it is up to the integrator

- To decide ROM contents à

- What is the RAM used for, and how

Additionally

- the interrupts can be

18 © 2009 Nokia FRUCT2009.ppt / J-EE

public key hashFlash boot
+ signature check

Check signature

on the first thing you boot

eFUSE keys

RAM
Security
stuff

Entry vector

- the interrupts can be
re-enabled also in the “closed place”

- there can be versioning, code uploads to RAM …

As always there are (research) problems. Of
types manufacturers rarely wish to talk about.

In practice the same design is a recurring theme, at least, say for systems like
M-shield and TrustZone (and even TPM Late Launch is close in principle)

HW security solutions wrap-up
• Trustworthy software security is solely based on secure hardware services
• A whole core cannot typically be dedicated to security (cheaply enough)
• Core-external add-on providing the services

• E.g., OMAP1710++ (TI- M-shield), or

• Integrated into the core
• E.g., ARM TrustZone (ARM1176 / OMAP25xx) - based solutions

• Features:
• Verifies the boot image before loading it

• Provide a trusted “monitor” for validating entry
into a secure execution environment

19 © 2009 Nokia FRUCT2009.ppt / J-EE

into a secure execution environment

• Provides some limited non-volatile storage
for permanent keys, hashes etc.

• Provides basis for, e.g.,
• Monitor runtime integrity

• Manage cryptographic keys

• Commit all actions requiring the use
of private keys

• Secure storage

• A very secure execution
environment for sensitive logic

Briefly about ARM TrustZone architecture

20 © 2009 Nokia FRUCT2009.ppt / J-EE

http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf

The S bit

• When the S-bit is 0, the system (core) is in the
“non-secure world”

• When the S-bit is 1 OR when the system is in the monitor mode, we are in the
“secure world”

21 © 2009 Nokia FRUCT2009.ppt / J-EE

SecureNon-secure
M
on
ito
r

On-chip
mem
TCM

SMI Set S-bit

Unset S-bit

The Monitor mode

• The SMI interrupt will
• Store the return address

• Set the monitor mode

• Disable interrupts, aborts.
Switch to ARM mode
(from Thumb, Jazelle)

• Pass a 16-bit parameter to the monitor

• PC = Monitor_Base_Address + 0x00000008

22 © 2009 Nokia FRUCT2009.ppt / J-EE

In the secure world privileged modes, you can switch to monitor mode at will (e.g. MSR instruction),
in all privileged modes you can use the SMI (Software Monitor interrupt) to get there.

Only in Monitor mode may the S-bit be set.

Once more, the principle

Security-relevant
code

Jump

Constrain the
state of the system
(interrupts, caches ..)

23 © 2009 Nokia FRUCT2009.ppt / J-EE

Your (OS) code

Access control,
authorization,
API
(you define)

TZ - Example 1

Privileged mode,
sec world

Boot

Set up monitor memory
- (Load an algorithm)
- Load a key

“Monitor”

Boot OS

comm. via registers

24 © 2009 Nokia FRUCT2009.ppt / J-EE

SMI

ret

comm. via registers

run algorithm

continue
execution

execute

Other TZ stuff …

-A (Not) secure bit is added for the MMU page table entries.
-> The MMU mapping will hide some parts of the memory

- as well as a “edit right” bit for the page table (line) itself

- The same information is duplicated in the cache (TLB)

25 © 2009 Nokia FRUCT2009.ppt / J-EE

- The AxProt signal (NS/S) is also visible for external logic (on the internal
processor bus)

- existing interrupts can be configured to enter Secure Monitor

-The DMA controller has TZ additions constraining DMA transfers based on NS/S

Trusted Mobile
Platforms
Jan-Erik Ekberg, Nokia Research Center

26 © 2009 Nokia FRUCT2009.ppt / J-EE

Jan-Erik Ekberg, Nokia Research Center
7.11 2007

TPM (introduction)

27 © 2009 Nokia FRUCT2009.ppt / J-EE

See www.trustedcomputinggroup.org for specification

What is a Trusted Platform Module?

-TPM is a separate security chip soldered on the computer motherboard
(most if not all business laptops have it already)

-TPM provides the system with security services,

- Trusted boot

- Sealing

- Binding

- Secure storage

28 © 2009 Nokia FRUCT2009.ppt / J-EE

Apple Intel
motherboard

- Remote Attestation

- (True) random number generator

-TPM requires CRTM support (Core Root of
Trust for Measurement)

-First wide-scale use case: Windows Vista Bit-locker

-Standardized by the Trusted Computing Group

TPM (trusted boot principle)

bootloader

Measurement
Load and
execute

Unique log of
system state

BIOS=CRTM

The very first measurement is a
self-measurement. We must thus
trust this code to submit
the right measurement (CRTM)

29 © 2009 Nokia FRUCT2009.ppt / J-EE

OS kernel

InitRD

Drivers

Loader

Stacks

Programs

“Always
measure first,
then execute”

TPM – Dynamic root of trust

During execution the (Intel/AMD) processor can

- Be given a piece of (VMM) code

- Processor disables security-critical activities
(multi-core, interrupts..)

- Code is

-put into cache (processor local storage)

-measured

1)move

2) measure

4) execute

3) measure

30 © 2009 Nokia FRUCT2009.ppt / J-EE

-measured

-measurement stored in TPM

-executed

OS

VMM

VMM

1)

2) ?

Platform configuration registers (PCRs)

• All system measurements are not stored in a list, but in one of
16 (32) or more PCRs.

• A PCR update (extend) to a PCR x with a new value newval consists of the
operation

x’ = SHA-1(oldval(x) | newval)

• The initial state of a PCR register is either 0x000…000 or 0x1111…111

31 © 2009 Nokia FRUCT2009.ppt / J-EE

• The initial state of a PCR register is either 0x000…000 or 0x1111…111

• The system (OS) keeps a list of all extends (newval :s).

• If one knows the list of newval1 , newval2 , newval3… and the TPM states the
current value of the register to be x’’

àààà then

TPM use 1: Remote attestation

measurements

Measurements capture the

state of the system

Ask for service

Ask for measurements

32 © 2009 Nokia FRUCT2009.ppt / J-EE

Signed response

Check signature,
(certificate) and
validate measurements
against “acceptable
values”

Provide service

Remote attestation provides a means for an
external party to validate the software state of a computing device

TPM use 2: Sealing

measurements

Measurements capture the

state of the system Software

Sealed Data

Reference metrics

Encrypted data

33 © 2009 Nokia FRUCT2009.ppt / J-EE

Only if measurements
in Seal equals current
measurements, then
decrypt and return

Decrypted data

Sealing can be used to guarantee that
some data is available to software only
in given system states (e.g. when booting
with specific bootloader and OS)

Binding is like sealing, but relates to key use
for RSA key-pairs generated in TPM

www.trustedcomputing.org/groups/mobile

Mobile TPM = MTM

34 © 2009 Nokia FRUCT2009.ppt / J-EE

www.trustedcomputing.org/groups/mobile

MTM In Brief

• Supports (mandates) most core functionalities of TPMv1.2:
• Binding and sealing

• Signing and key certification

• Attestation

-> but delegation, migration, DAA, memory services are at large optional

35 © 2009 Nokia FRUCT2009.ppt / J-EE

• MTM adds
• Secure boot (wrong measurement -> boot is aborted)

• (SW) Functionality rather than HW

• The concept of MTM instances

Another way to look at the difference TPM v.s. MRTM

TPM_Init, TPM_Startup, TPM_SaveState, TPM_SelfTestFull TPM_ContinueSelfTest TPM_GetTestResult.
TPM_SetOwnerInstall, TPM_OwnerSetDisableTPM_PhysicalEnable TPM_PhysicalDisable,
TPM_PhysicalSetDeactivated TPM_SetTempDeactivated TPM_SetOperatorAuthTPM_TakeOwnership
TPM_OwnerClear, TPM_ForceClearTPM_DisableOwnerClear. TPM_DisableForceClear TSC_PhysicalPresence
TSC_ResetEstablishmentBit, TPM_GetCapability, TPM_SetCapability, TPM_GetCapabilityOwner
TPM_GetAuditDigest TPM_GetAuditDigestSigned TPM_SetOrdinalAuditStatus, TPM_FieldUpgrade,
TPM_SetRedirection, TPM_ResetLockValue, TPM_Seal, TPM_Unseal, TPM_UnBind, TPM_CreateWrapKey,
TPM_LoadKey2, TPM_GetPubKey, TPM_Sealx, TPM_CreateMigrationBlob, TPM_ConvertMigrationBlob,
TPM_AuthorizeMigrationKey, TPM_MigrateKey, TPM_CMK_SetRestrictions, TPM_CMK_ApproveMA,
TPM_CMK_CreateKey, TPM_CMK_CreateTicket, TPM_CMK_CreateBlob, TPM_CMK_ConvertMigration,
TPM_CreateMaintenanceArchive, TPM_LoadMaintenanceArchive, TPM_KillMaintenanceFeature,
TPM_LoadManuMaintPub, TPM_ReadManuMaintPub, TPM_SHA1Start, TPM_SHA1Update, TPM_SHA1Complete,
TPM_SHA1CompleteExtendTPM, TPM_Sign, TPM_GetRandom, TPM_StirRandom, TPM_CertifyKey,
TPM_CertifyKey2, TPM_CreateEndorsementKeyPair, TPM_CreateRevocableEK, TPM_RevokeTrust,

TPM v.1.2 (max)

36 © 2009 Nokia FRUCT2009.ppt / J-EE

TPM_CertifyKey2, TPM_CreateEndorsementKeyPair, TPM_CreateRevocableEK, TPM_RevokeTrust,
TPM_ReadPubek, TPM_OwnerReadInternalPub, TPM_MakeIdentity, TPM_ActivateIdentity, TPM_Extend,
TPM_PCRRead, TPM_Quote, TPM_PCR_Reset, TPM_Quote2, TPM_ChangeAuth, TPM_ChangeAuthOwner,
TPM_OIAP, TPM_OSAP, TPM_DSAP, TPM_SetOwnerPointer, TPM_Delegate_Manage,
TPM_Delegate_CreateKeyDelegation, TPM_Delegate_CreateOwnerDelegation,
TPM_Delegate_LoadOwnerDelegation, TPM_Delegate_ReadTable, TPM_Delegate_UpdateVerification,
TPM_NV_DefineSpace, TPM_NV_WriteValue, TPM_NV_WriteValueAuth, TPM_NV_ReadValue,
TPM_NV_ReadValueAuth, TPM_KeyControlOwner, TPM_SaveContext, TPM_LoadContext, TPM_FlushSpecific,
TPM_GetTicks, TPM_TickStampBlob, TPM_EstablishTransport, TPM_ExecuteTransport,
TPM_ReleaseTransportSigned, TPM_CreateCounter, TPM_IncrementCounter, TPM_ReadCounter,
TPM_ReleaseCounter, TPM_ReleaseCounterOwner, TPM_DAA_Join, TPM_DAA_Sign, TPM_EvictKey,
TPM_Terminate_Handle, TPM_SaveKeyContext, TPM_LoadKeyContext, TPM_SaveAuthContext,
TPM_LoadAuthContext, TPM_DirWriteAuth, TPM_DirRead, TPM_ChangeAuthAsymStart,
TPM_ChangeAuthAsymFinish, TPM_Reset TPM_OwnerReadPubek, TPM_DisablePubekRead, TPM_LoadKey-optionally w.o. migration, locality

add: MTM_InstallRIM, MTM_LoadVerificationKey, MTM_LoadVerificationRootKeyDisable, MTM_VerifyRIMCert,
MTM_VerifyRIMCertAndExtend, MTM_IncrementBootstrapCounter, MTM_SetVerifiedPCRSelection

Use cases according to specification (2005):

• Platform Integrity

• Proving Platform and/or Application Integrity to End User

• User / Device Owner Data Protection and Privacy

• Device Authentication

• Robust DRM Implementation

• SIMLock / Device Personalization

37 © 2009 Nokia FRUCT2009.ppt / J-EE

• SIMLock / Device Personalization

• Secure Channel between Device and UICC

• Secure Software Download

• Mobile Ticketing

• Mobile Payment

MTM as an architectural component

MRTM Mobile remote owner

Device boot

Root-of-Trust
for Verification

Root-of-Trust
for Storage

Root-of-Trust
for Enforcement
(also includes the execution
environments of the MTMs)

MRTM

38 © 2009 Nokia FRUCT2009.ppt / J-EE

MRTM Mobile remote owner
trusted module = device manufacturer

MLTM

Mobile local owner
trusted module = user?

MLTM
MLTM

MRTM

transitive trust

The boot-up

39 © 2009 Nokia FRUCT2009.ppt / J-EE

Static data in MTMs

• counterStorageProtectId – storage protect counter

• counterRIMProtectId – protect RIM certs

• counterBootstrap - initial boot version

• verifiedPCRs - PCRs only modifiable by RIM certs

•loadVerificationKeyMethods – (root load, integrity check

specified counters

PCR constraint

40 © 2009 Nokia FRUCT2009.ppt / J-EE

•loadVerificationKeyMethods – (root load, integrity check
root data, auth(s))

•integrityCheckRootData - hash of root verification key

•InternalVerification key - key for InstallRIM - certs

• verificationAuth (auth. For InstallRIM)

•loadVerificationRootKeyEnabled (in STANY_FLAGS)

•AIK - (attestation key, if preconfigured)

Key management for
checking RIMs

PCR info allocation

• PCR 0: HW Platform

• PCR1: Roots-of-Trust

• PCR2: Engine load events

• PCR3-6: MRTM proprietary measurements (platform, code-specific)

• PCR7: OS measurement

• PCR8-: “Platform specific”

41 © 2009 Nokia FRUCT2009.ppt / J-EE

• PCR8-: “Platform specific”

The reference architecture defines an event language for facilitating
interoperability, e.g.,

Diagnostic: “MRTM1”:”/boot/mrtm.bin”:0234B8269CC672EF27352
(engine) (object) (image)

RIM certificate (Reference Integrity Metric)

RIM

Constraints:

Counter value
- bootstrap
- RIMProtect

Target:

Measurement value
to be added to given

42 © 2009 Nokia FRUCT2009.ppt / J-EE

Certificate
- RIMProtect

PCR composite value

Verification key
(authorization)

to be added to given
PCR

Signed by
a verification key

Verification keys

checkRootDatapermanent data

Root key

integrity check when loaded

verification key verification key

signed

signed

Verification key constraints:

43 © 2009 Nokia FRUCT2009.ppt / J-EE

verification key

RIM

Certificate

signed

Verification key constraints:

Counter:

- bootstrap counter

- RIMProtect counter

Usage:

- increment bootstrap counter

- sign other verification keys

- sign RIM certificates

(+ a possibility for vendor extensions)

Example setup (MRTM)

• verifiedPCRs {0-3}

•loadVerificationKeyMethods {root data, auth:s}

•integrityCheckRootData {0x7817..} hash of root verification key

•loadVerificationRootKeyEnabled = FALSE

•Bootstrap counter value 0

•AIK {0xAAE824..}

•SRK {0x9837923..} factory preset

Fixed data

44 © 2009 Nokia FRUCT2009.ppt / J-EE

•SRK {0x9837923..} factory preset

Root verification key

Fixed data on storage:

RIM certificate
RIM certificate
RIM certificate
RIM certificate

Verification key

Boot (with, say TI M-shield)

Processor
public key
secret

SoC

MRT
M
code

Send sec. storage to chip

Boot, check
M-shield signature

Sec.

Send MRTM code to chip

sec storage

decrypt

Root verification key

Root verification key

Verification key

Verification key

RIM certificate

- Bootstrap ctr 0
PCRs in “initial state”
Verification key

PCR3=..
RIM certificate

- Bootstrap ctr 0
PCRs in “initial state” +
bootstrap code in PCR3

- Verification key

Verification key

Verification key

PCR7=..

sec storage

Containing SRK, AIK,
RVAI, verifiedPCRs …

45 © 2009 Nokia FRUCT2009.ppt / J-EE

Send sec. storage to chipSec.
bootstrap
code

MRTM
code

sec storage

Self-measurement

- code of bootstrap ->
PCR3

OS bootloader

measure

- Verification key

- code of bootloader ->
PCR7

Additional MTM components

• Certificate (revocation) lists for both RIM certificates and verification keys
validity lists -> whitelist

• Lists of MTMs that are to be started at boot (error -> abort)
(a local owner may also have MLTM as part of secure boot)

• External and Internal RIMs

• Counters

46 © 2009 Nokia FRUCT2009.ppt / J-EE

• Counters
• The Bootstrap counter is only guaranteed for 32 steps

• The RIMProtect counter is only guaranteed for 4096 steps

• The security level of the counters is more or less unspecified

How do the pieces fit together in an embedded device?

HW security Chip-vendor specific solutions will dominate
(secure boot, secure storage,
secure execution?)

C
om
m
. s
ta
ck
s

MTM provides a unified approach for
- defining and enforcing secure boot properties
- a defined level of security
- (an API for security services)

OS

MRTMMRTMs

47 © 2009 Nokia FRUCT2009.ppt / J-EE

OS security (MAC) can bootstrap from known
interfaces (integration not necessary) Apps

Some apps may use MTMs e.g. for secure storage,
attestation, …

… and how to protect interfaces, if needed

Motivation:

- coherent way to map a conditionally
available property

Approach:

- map a PCR register (value) to the enabling /

48 © 2009 Nokia FRUCT2009.ppt / J-EE

disabling of a (HW) resource

- as MTM can be software, this is only some
extra logic

- no extra drivers are needed in enabling software,
Only the conditional application of RIM
certificates

- can be used for post-deployment activation

… and please get your hands dirty

- Done at Nokia Research Center Helsinki in 2007 (a few fixes have dropped in

49 © 2009 Nokia FRUCT2009.ppt / J-EE

- Done at Nokia Research Center Helsinki in 2007 (a few fixes have dropped in
since then)

- A free-for-all (GPL) MTM emulator done as patch to Mario Strasser’s TPM
emulator

- Get it at http://mtm.nrsec.com

- Compiles and runs at list on Linux and Cygwin

Conclusions

• Mobile Terminals have a long tradition of HW & SW security

• Regulatory approval and service cost motivate inclusion of security

• The history in embedded devices stems from legacy (HW, SW, security)

• The MTM specification
• Gives a way to quantify secure boot in a commonly agreed way

• May be used as bridge between HW & OS security features

50 © 2009 Nokia FRUCT2009.ppt / J-EE

• Can be used for some typical mobile services

• The legacy TrEE:s are more versatile than e.g. the TPM/MTM specifications
• Can be used to support architectures like On-Board Credentials

• … and vice versa: Could TPM / MTMs develop towards more general
service support (include the notion of a TrEE:s)?

Thank you!
Any questions?

51 © 2009 Nokia FRUCT2009.ppt / J-EE

Any questions?

On-Board Credentials
(R&D project at Nokia)

52 © 2009 Nokia FRUCT2009.ppt / J-EE

(R&D project at Nokia)

Traditional credential types

• Credential: “credential secret” + a “credential program”
• Software credentials

• Virtual: e.g., passwords remembered by browser (extension)

• Cheap and flexible

• Insecure against malware and device loss

53 © 2009 Nokia FRUCT2009.ppt / J-EE

• Hardware credentials
• Physical: e.g., SIM cards and SecurID tokens

• More secure and more intuitive

• No trusted path to user, more expensive, less flexible

OnBoard Credentials

• OnBoard Credentials (ObCs): Virtual credentials based on trusted HW
• More secure than traditional software credentials

• Cheaper and more flexible than traditional hardware credentials

SW credentials HW credentials
OnBoard
Credentials

Flexible &
cheap

Very
secure

54 © 2009 Nokia FRUCT2009.ppt / J-EE

• Cheaper and more flexible than traditional hardware credentials

• Not much prior work on this topic (academic or otherwise)
• Systems based on TPM; Fixed credential type (e.g. passwords for browsing)

• Similar in spirit to multi-application smartcards
• But without issuer control

Design goals

• Credential programs can be executed securely
• Use the secure execution environment

• Credential secrets can be stored securely
• Use a device-specific secret in secure environment for secure storage

• Creating new types of credentials (i.e., new credential programs) is easy

• Anyone can create and use new credential types

55 © 2009 Nokia FRUCT2009.ppt / J-EE

• Need a security model to strongly isolate credential programs from one another

• Avoid the need for certification of credential programs

• Anyone can provision credential secrets securely to a credential program
• Needs a mechanism to create a secure channel to the credential program

• (certified) device keypair; unique identification for credential programs

ObC architecture

Credentials
Manager

Credentials
Database

Device OS

Secure

Client
Applications

• Secure environment based on
trusted hardware
• Secure storage, using a
device-specific ObC Platform
Key (OPK)

• Secure execution
• TPM, M-Shield, …
• Certified device keypair

56 © 2009 Nokia FRUCT2009.ppt / J-EE

Interpreter

Secure environment

ObC
program

Secure
UI

• Certified device keypair
PKdev/SKdev

• Interpreter running in secure
environment (Lua)
• Credential programs
implemented as scripts

• code hash as unique ID

• Secure UI for user interaction
OPK

ObC
program

…

SKdev

Provisioning
Crypto
Library

Longer Tech Report at http://research.nokia.com/tr/nrc-tr-2008-001

Isolation of Credential Programs

• Isolating the platform from ObC programs
• Constraining the program counter, duration of execution, …

• Isolating ObC programs from one another
• Only one ObC program can execute at a time

57 © 2009 Nokia FRUCT2009.ppt / J-EE

• An ObC program can “seal” data for itself
• Sealing key is different for every independent ObC program

• Sealing-key = f (ObC Platform Key, ObC program ID)

• … and every group of interdependent ObC programs
• Sealing-key = f (ObC Platform Key, ObC program group ID)

Requirements for Provisioning Credentials

• Provisioning protocols typically focus on user authentication only
• … and also tend to focus on secrets like keys – not programs

• IETF keyprov WG: Dynamic Symmetric Key Provisioning Protocol (DSKPP)
• Allows device authentication as well

• We need more…
• provision a key so that it can be accessed by specific credential programs

58 © 2009 Nokia FRUCT2009.ppt / J-EE

• Subject to…
• “Anyone can provision credential secrets securely to a credential program”

• Support for multiple versions of credential programs

• Support for several co-operating credential programs

Provisioning credential secrets (1/3)

Basic Idea: the notion of a family of credential secrets and credential programs
endorsed to use them

59 © 2009 Nokia FRUCT2009.ppt / J-EE

Family secretsFamily programs

Provisioning credential secrets (2/3)

PKDev RK

CK IK

• Provision a family root key to the device
• using authentic device public key PKdev

• Transfer encrypted credential secrets
• using family confidentiality key CK

Family Root

Key RK

ObCP/Init

Credential

Secret data

CK

ObCP/Xfer

60 © 2009 Nokia FRUCT2009.ppt / J-EE

• Endorse credential programs for family membership
• (program ID is encrypted)

• using family integrity key IK

Credential

Program

IK

ObCP/Endorse

CK

Provisioning credential secrets (3/3)

• 2-pass provisioning
• Get (certified) device public key and validate it

• Send ObCP/Init, ObCP/Endorse and ObCP/xfer

• CT-KIP 2-pass extensions defined by Magnus Nyström (RSA)

• Anyone can define a family by provisioning a root key

61 © 2009 Nokia FRUCT2009.ppt / J-EE

• Multiple credential secrets and programs can be added to a family

• Credential Programs can be encrypted as well Secret

Program

CK

ObCP/Xfer

Device view: ObC Provisioning

• Credentials protected by hardware
secure environment
• Provisioned data encrypted with PKD
• Not accessible to Device OS

• Cannot be copied between devices

• Hardware attack is typically
destructive and device-specific

2. ObCP/Init, ObCP/Xfer, ObCP/Endorse

Device OS

1. PKD, Certificate

3. AddSecretl(), AddProgram(),
CreateCredential()

5. Store sealed

Provisioning client

Provisioning server

Extensions to CT-KIP 2-Pass

62 © 2009 Nokia FRUCT2009.ppt / J-EE

• All Credential Manager data can be
backed up

Credentials
Manager

Credentials
Database

Secure environment

Interpreter

Provisioning
subsystem

SKDe
v

OPK

Crypto
Library

4. Decrypt packages
and seal credential

credential

Conclusions

• Mobile Terminals have a long tradition of HW & SW security

• Regulatory approval and service cost motivate inclusion of security

• The history in embedded devices stems from legacy (HW, SW, security)

• The MTM specification
• Gives a way to quantify secure boot in a commonly agreed way

• May be used as bridge between HW & OS security features

63 © 2009 Nokia FRUCT2009.ppt / J-EE

• Can be used for some typical mobile services

• The legacy TrEE:s are more versatile than e.g. the TPM/MTM specifications
• Can be used to support architectures like On-Board Credentials

• … and vice versa: Could TPM / MTMs develop towards more general
service support (include the notion of a TrEE:s)?

Thank you!
Any questions?

64 © 2009 Nokia FRUCT2009.ppt / J-EE

Any questions?

Software security

Security before Symbian 9:

65 © 2009 Nokia FRUCT2009.ppt / J-EE

Software security
(extra slides)

In the mobile domain, the “open OS:s” are already
hardened
• Symbian OS 9.0+ mandates the use of OS Security features

• Major building blocks of the Symbian OS PlatSec
• Capability framework

• Rights of executables

• Trust levels of libraries

• Data Caging
• Protected directories

66 © 2009 Nokia FRUCT2009.ppt / J-EE

• Protected directories

• Process Identification

• Trusted Computing Base (TCB)
• Kernel, Software installer, File server, Loader

• Secure UI

Symbian security basics

• Security boundaries
• Process boundary = memory protection boundary = security boundary
• Therefore all code within a process has the same trust level

• Security policy checking
• Done at process boundary – when inter-process communication is done
• Policy checks by resources themselves (single class)
• Policy based on capabilities

67 © 2009 Nokia FRUCT2009.ppt / J-EE

• Policy based on capabilities
• Capabilities are permissions to do something
• SID and VID identify the process and the group it belongs to

• Minimum permissions principle
• Processes are given only those capabilities that they need
• Even all system servers do not have all capabilities

• Local storage
• Program-specific private directory

Capability framework

• 40% of Symbian OS APIs protected with a capability

• To use a service requiring a capability, the application needs to have it
• Normal case:

• Application has passed certain tests and is signed against a certificate (Symbian signing)

• A signed installation package contains the list of capabilities the application has

• A self-signed application has no capabilities
• user can grant user capabilities

• Blanket (installation time)

68 © 2009 Nokia FRUCT2009.ppt / J-EE

• Blanket (installation time)

• One-shot (when the requiring action takes place)

• Capabilities for a dynamic library
• For an application to load a library, the library always has to have a superset of the capabilities
of the application for the load to succeed

• Certification authority creates a single-use key pair and certificate and signs the software
package. It can now be distributed
• This way, each software package is signed with a unique key

• Revocation of a key revokes (blacklists) one software package

Capability assignment

69 © 2009 Nokia FRUCT2009.ppt / J-EE

Capability framework – Basic/User capabilities

70 © 2009 Nokia FRUCT2009.ppt / J-EE

More constrained capabilities (system software)

• MultimediaDD Grants access to multimedia device drivers
• PowerMgmt Grants the right to power off unused peripherals, switch
the phone into/out of standby state and power phone
down

• ReadDeviceData Grants read access to phone confidential settings or data
• WriteDeviceData Grants write access to phone confidential settings that

control the phone’s behaviour
• NetworkControl Grants access or modification rights to network protocol

71 © 2009 Nokia FRUCT2009.ppt / J-EE

• NetworkControl Grants access or modification rights to network protocol
controls

• SwEvent Grants the right to generate software key and pen events
• TrustedUI Grants the right to create a trusted UI session, and therefore

to display dialogs in a secure UI environment
• ProtServ Grants the right to a server to register with a protected name.

Protected names start by a “!”.
• DRM Grants access to protected content
• SurroundingsDD Grants access to the surroundings device driver

Really powerful capabilities

72 © 2009 Nokia FRUCT2009.ppt / J-EE

The capability mechanism is

-Easy to understand

-Easy to control

But still, the Symbian security
- combines policy with enforcement
- and is not extendable.

Process Identification

• Secure Identifier (SID)
• Guaranteed to be locally unique

• Helps in limiting access to APIs to specific applications

• Symbian Signed applications will have their SID from a protected range

• Vendor Identifier
• Signed applications can have a unique Vendor identification

73 © 2009 Nokia FRUCT2009.ppt / J-EE

Data Caging

• Fixed filesystem structure
• /sys/

• Restricted system area, accessible only to programs with TCB capability
• Executables are placed in /sys/bin/ (executables are not run from other places)

• /private/
• /private/<SID>/ contains the private data for each program
• Backup and Restore will need active participation of the owning process

74 © 2009 Nokia FRUCT2009.ppt / J-EE

• Backup and Restore will need active participation of the owning process

• /resource/
• Contains public data
• Read-only for programs without TCB capability

• Everything else has public r/w rights
• Executing from removable media (which might have been altered)

• An initial hash of a program is stored in the /sys/ -directory, which is recomputed and
checked whenever the program is run.

