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Detection Problem in Cognitive Radio

I In cognitive radio (CR) networks, dynamic spectrum allocation

is implemented to mitigate spectrum scarcity issue.

I A secondary (unlicensed) user is allowed to utilize the

spectrum resources when it does not cause intolerable

interference to the primary (licensed) user.

I It is essential that the secondary user will make a quick and

reliable decision based on spectrum sensing.

I Recently emerged eigenvalue-based detection is promising

method to solve this problem.
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Signal Model

I Assume we have K sensors and N samples, the received

K × N data matrix Y is
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H0 : y
(n)
k = n

(n)
k (2)

H1 : y
(n)
k = h

(n)
k s

(n)
k + n

(n)
k , (3)

I The received covariance matrix R = YYH .
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Signal Model

I Assume at most one primary user transmitting and no fading

in the temporal domain, distribution of R follows:

H0 : complex central Wishart distribution (4)

H1 : complex non-central Wishart distribution, (5)

non-centrality matrix M = hk(s
(n))H is shown to be rank 1.

I We want to discriminate between the two hypotheses based on

the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λK of covariance matrix R.

I Rank one M leads to a major di�erence on the numerical value

of the largest eigenvalue λ1 of R, but the impact on other

eigenvalues is much smaller.
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Largest Eigenvalue Based Detection

I Based on the distribution functions of the largest eigenvalue in

central Wishart (1964Khatri) and non-central Wishart

(2003Kang) matrices, we can calculate the optimal decision

threshold.

I This threshold is obtained such that a weighted sum of the

false alarm probability Pfa and the miss detection probability

Pm is minimized:

γopt = arg min
γ≥0

C0Pfa(r) + C1Pm(r), (6)

I Trade-o� in Pfa and Pm depends on the choice of C0 and C1.
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Threshold Optimization
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Figure: K = 4, N = 20, C0 = 1, C1 = 1.5.



Performance Comparison

I Remind that our proposed detector: f(Y) = λ1(YY
H).

I Cooperative Energy Detector: g(Y) = ||Y||2F .
I ||Y||2F = tr{YYH} =

∑K
i=1

λi � much heavy tailed distribution

than distribution of λ1.
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Figure: Performance Comparison
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Thank you!
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