
Data allocation for parallel Data allocation for parallel 
processing in distributed processing in distributed 
computing systemscomputing systems

St. Petersburg State University of Aerospace Instrumentation
Institute of High-Performance Computer and Network Technologies

computing systemscomputing systems

Alexey Syschikov
Researcher

Parallel programming Lab
Bolshaya Morskaya, No 67

190 000 St. Petersburg, Russia
E-mail: alexey.syschikov@guap.ru

Denis Rutkov
Post-graduate student

Parallel programming Lab
Bolshaya Morskaya, No 67

190 000 St. Petersburg, Russia
E-mail: dendron2000@mail.ru



Introduction

• Many computations have a 
potential for parallelization

• Vector computational 
model is not sufficient to 
cover all algorithms

2

cover all algorithms

• Methods of data allocation 
to local memory of 
processor elements is a 
very important question in 
distributed computing 
system



Concept of data allocation

Type of allocation Specification method

Data allocation

3

How data are allocated 
on PE’s of a distributed 
system.

What language 
instruments are 
presented for 
programmer to define 
and control data 
allocation



Data distribution
• Pros:

–Parallel computations with 
complex data dependences

–Process data without 
increasing of data in system

PE PE

PEs receive just a part of 
data that is required, 
remaining data should be 
requested from other PEs

4

• Cons:

–Reduced computation 
effectiveness due to 
communications

–Necessity for synchronization 
of inter-processor 
communications 

–Data communications in 
program code

PE

PE

PE

PE

Data



Data localization
• Pros:

–PEs are completely 
independent 

–No communications during 
the computation process

PE PE

PEs receive sufficient 
data for computation, no 
requests to other PEs can 
and should be made

5

• Cons:

– Increased data amount in 
the system

–Requirements for 
centralization and preparing 
of data for localization

– Impossible to parallelize 
computations that have 
non-localizable data

PE

PE

PE

PE

Data

Data Data

Data Data



Allocation specification methods

• Automatic allocation
– Data will be allocated without the 

involvement of programmer
– Data allocation task must be fully 

solved by a compiler

• Predefined allocation

6

• Predefined allocation
– Programmer has a parameterized 

templates to allocate data to virtual 
processors

– Mapping of virtual processors to 
physical processors is performed by 
a compiler or in runtime

• Custom allocations
– Custom allocations are completely 

specified by the programmer 



Reviewed languages and system
• Message Passing Interface (MPI) / MPI Forum

– MPI is a communication routines between library (C/C++/Fortran).
Currently MPI is a de-facto standard for message passing.

• High Performance Fortran (HPF) / HPF Forum
– HPF is a set of extensions to Fortran 90 that provide access to high-

performance features with maintaining portability across platforms.
• Co-array Fortran (Fortran 2008)   / Minnesota&RICE universities

7

– Co-Array Fortran is a set of extensions to Fortran 95 for SPMD parallel 
processing on any kind of parallel architecture.

• Distributed Virtual Machine (DVM) / Keldysh Institute, RAS 
– DVM allows to develop parallel programs in C-DVM and Fortran-DVM 

languages for different architectures computers and computer networks.
• ZPL / University of Washington

– ZPL is an array programming language without explicit parallel 
instructions and automatic data distribution.

• Chapel / CRAY
– Chapel is a new imperative block-structured high-performance 

programming language.



Data allocation types
• Message Passing Interface (MPI)

– MPI 1.x standard defines data localization
– MPI 2.x standard adds data distribution by direct read/write 

• High Performance Fortran (HPF)
– HPF uses data localization. It doesn’t allow defining explicit inter-

processor communications or access data located on other PE

• Co-array Fortran (Fortran 2008)

8

• Co-array Fortran (Fortran 2008)
– Co-array Fortran uses data distribution. In fact, Co-array Fortran is a 

high-level superstructure over traditional communication routines (MPI).

• Distributed Virtual Machine (DVM)
– DVM uses both types: data localization (directive DISTRIBUTE),

data distribution (directives SHADOW, REMOTE, REDUCTION). 

• ZPL
– ZPL execution model uses data distribution.

• Chapel
– Chapel uses data distribution.



Allocation specification methods
• Message Passing Interface (MPI)

– MPI functions organize predefined allocations with blocks:
Functions SEND, SCATTER, GATHER etc.

• High Performance Fortran (HPF)
– HPF 1.x uses predefined allocations of equally-sized blocks (BLOCK 

and CYCLIC directives).

• Co-array Fortran (Fortran 2008)

9

• Co-array Fortran (Fortran 2008)
– Co-array Fortran uses the predefined allocation with fixed-size blocks.

• Distributed Virtual Machine (DVM)
– DVM uses predefined allocations with blocks (BLOCK/GEN_BLOCK) 

or over alignment (ALIGN WITH)

• ZPL
– ZPL execution model supports automatic allocation with blocks only

• Chapel
– Chapel is oriented towards custom allocations. However, it will also 

support a set of predefined distributions (Block, Cyclic, Cut…)



Summary of features

Language or
system

Allocation types Allocation specification

Locali-
zation

Distri-
bution

Auto-
matic

Pre-
defined

Cus-
tom

MPI + + (2.х) – + ~

10

MPI + + (2.х) – + ~

HPF + – ~ + –

Co-array Fortran – + – + –

DVM + + – + –

ZPL – + + – –

Chapel – + – + +



Summary
q Old problem of compromise between programmability and 

functionality also appeared in data allocation

q Most approaches use the predefined allocations with just 
several predefined allocations: about 5 templates.

q Limited amount of allocation templates significantly restrict 
abilities of a programmer to implement his task conveniently.

11

abilities of a programmer to implement his task conveniently.

q Selection between data localization and data distribution is 
always a compromise.

q The language should contain small set of predefined 
allocations and ability to construct custom allocations.

q Clear choice must be done between data localization and 
data allocation according to tasks specifics.



The endThe endThe endThe endThe endThe endThe endThe end

12



Backup slidesBackup slidesBackup slidesBackup slidesBackup slidesBackup slidesBackup slidesBackup slides

13



MPI functions organize predefined allocations.
1.With blocks. Functions SEND, SCATTER, GATHER etc.

a.Equal blocks

MPI_Scatter( sendbuf, 15, MPI_INT, rbuf, 15, MPI_INT, root, comm);
// Where 15 – a block size for every destination process
/* Process root split source data (stored at address sendbuf) between all processes of communicator comm.
with equal blocks of 15 integers for every process. */

a.Unequal blocks

MPI_Comm comm;
int gsize,sbuf[1000];
int displ, rbuf[1000], i, disp[1000], cnt[1000];

14

int displ, rbuf[1000], i, disp[1000], cnt[1000];
...
MPI_Comm_size( comm, &gsize);
displ = 0;
for (i=0; i<gsize; ++i) {

disp[i] = displ;
cnt[i] = i*2;
displ += cnt[i];

}
MPI_Scatterv( sbuf, cnt, disp, MPI_INT, rbuf, cnt[nproc], MPI_INT, 0, comm);
/* Where disp – array with displacements in the source array, cnt – array with block sizes
Process root split source data (stored at address sbuf) between all processes of communicator comm. with
different blocks of 0, 2, 4, etc. integers for processes 0, 1, 2, etc. respectively. */

Allows to make a data duplication thus, in a common, this data allocation may be considered
as the custom allocation.



In the Co-array Fortran language it is used the
predefined allocation with fixed-size blocks. An array is
extended with external dimensions which are allocated to
virtual processors. Exact execution stream should obviously
access either to its local copy of an array or to a remote one.

X = Y[PE] ! get from Y[PE]
Y[PE] = X ! put into Y[PE]

15

Y[PE] = X ! put into Y[PE]
Y[:] = X ! broadcast X
Y[L] = X ! broadcast X 
over subset of PE’s in array L
Z(:) = Y[:] ! collect all Y



DVM-system uses predefined allocations:
1.With blocks

a.Equal blocks (localization / distribution). Parameter – amount of data for block or for
equal blocks between all processors.

CDVM$ PROCESSORS R( 4 )
REAL A(12)
CDVM$ DISTRIBUTE A (BLOCK) ONTO R
!Split the array A between amount of processors specified in R with equal blocks of |A|/|R|
elements. For some values of |A| and |R| last processors in R may receive less array elements
or even receive nothing.

a.Unequal blocks (localization). Parameter – array with data amount for every processor
or array with weights of source data elements.

16

or array with weights of source data elements.

CDVM$ PROCESSORS R( 4 )
INTEGER BS(4)
REAL A(12)
CDVM$ DISTRIBUTE A ( GEN_BLOCK( BS ) ) ONTO R
!Split the array A on |BS| blocks, where block i has size BS(i) and is placed on processor R(i),

1.Allocation over alignment.

REAL A(10), B(10,10), С(10)
CDVM$ DISTRIBUTE B ( BLOCK , BLOCK )
CDVM$ ALIGN A( I ) WITH B( 1, I )
!Alignment on array section (vector alignment over the first row of matrix A)
CDVM$ ALIGN С( I ) WITH B( *, I )
!Vector multiplication (alignment of vector over every rows of matrix B)



---------- Declarations ----------
region
R = [1..n, 1..n ]; -- problem region
BigR = [0..n+1, 0..n+1]; -- with borders

direction
north = [-1, 0]; -- cardinal directions
east = [ 0, 1];
south = [ 1, 0];
west = [ 0, -1];

---------- Entry Procedure ----------
procedure jacobi();
var

ZPL

17

var
A, Temp : [BigR] float;
delta : float;

[R] begin
repeat

Temp := (A@north + A@east + A@south + A@west) / 4.0;
delta := max<< abs(A-Temp);
A := Temp;

until delta < epsilon;
end;
--Jacobi iteration. Given an array A, iteratively replace its elements with the average of their
four nearest neighbours, until the largest change between two consecutive iterations is less
than epsilon.



const n1 = 1000000;
class MyC: Distribution {
const z: integer; /* block size */
const ntl: integer =... /* number of target locales */

function map(i:index(source)): locale { return 
Locales(mod(ceil(i/z-1)+1,ntl));}
}
/*Global map for a simplified block-cyclic distribution with block size z≥1; the type of 
argument i is the type of the indices in the source domain: */
class MyB: Distribution {

Chapel

18

const bl: integer =. . .; /* block length */
function map(i: index(source)): locale { return 
Locales(ceil(i/bl));}
}
/*Global map for a simplified regular block distribution with block length bl: */
const D1C: domain (1) distributed (MyC(z=100))=[1..n1];
const D1B: domain (1) distributed (MyB) 

on Locales(1..num locales/10)=[1..n1];
var A1: [D1C] float;
var A2: [D1B] float;


