
Security vulnerability found in On-
Board Credentials validation activity

Afanasyeva Alexandra, SUAI

Ekberg Jan-Erik, NRC

alra@vu.spb.ru

2/11

Background

� On-Board Credentials is a framework by Nokia Research
Center for secure execution of third-party credentials on e.g.
embedded devices

� The framework also includes a provisioning protocol by
which any third part can provision credentials onto the
platform

� A Fruct project (SUAI) was set up to analyze parts of the
framework, among other things the provisioning protocol

� A vulnerability was found by which the integrity of the
provisioned 3rd-party credentials programs could be
compromised

� The implementation of ObC was changed to correct the
found security vulnerability

3/11

OnBoard Credential Platform

4/11

Provisioning Protocol

� Goal: To allow any entity to provision secure
data and program on the device.

� Steps:

� User send to device

� Init = header || EncPK_D(FK)

� Xfer = AEFK(header, <secret>)

� Xfer = AEFK(header, <program>) or <program>

� Endorse = AEFK(header, H(<program>))

� Device:

� If program wants to read secret it should have
appropriate Endorse

5/11

Attack on Provisioning Protocol

� Intruder

� sniffs Endorse = AE(FK, header,
H(<program1>))

� generates program2 for disclosing of secret

� generates program2 in such a way that
H(<program2>)= H(<program1>)

Problem statement:

Find second pre-image for hash-function used
in provisioning protocol

6/11

Cryptographic Primitives

� There is a restriction on size of code which
implements all cryptographic functions
(encryption, hash, …)

� So, only one crypto-primitive (AES-EAX) was
used as basis for all these functions

� Authenticated encryption

� Hash function

(, , ,)AE AES EAX key header nonce data= −

(_ _ ,)HASH AES EAX public hash key data= −

7/11

AES-EAX Encryption Mode

� X = {x1,x2, … xn}

� OMACK(X)={

for i = 1 to n

return(cn) }

� CTRK(X,N) = {

for i = 1 to n

return(c1,c2,…,cn) }

0, 0n nx x pad c= ⊕ =

1()ENC

i K i ic AES x c −= ⊕

()ENC

i i Kc x AES N i= ⊕ +

8/11

Hash Function Vulnerability

� Given: � Find:

� M, Hash(M)=T � mn+1 :

� Arbitrary Hash(M’|| mn+1) =T

M’ = {m1, m2, … mn}

The only restriction on M’ is |M’| =n*128

9/11

Finding mn+1

()()
()

0 1 2

1 (0) (0) ((',))DEC

n HK HK HK HK KH

ENC

HK

m AES T OMAC OMAC OMAC CTR M pad

AES n

+ = ⊕ ⊕ ⊕ ⊕ ⊕

⊕ +

N

N0 M’||mn+1 0

1)

()()

()

()()

0 1

2

', ||

|| (0) (0)

',

KH

DEC

HK HK HK

HK KH

C CTR M

AES T OMAC OMAC

OMAC CTR M pad

=

⊕ ⊕ ⊕

⊕ ⊕

N

N

2)
0 1(0) (0)HK HKT OMAC OMAC= ⊕ ⊕C

1)

2)

3)

3)

Hash T=

10/11

Conclusions

� A good, and flawless security design in the
end benefits the customer

+ independent design validation

+ validating implementations prior to deployment
can find problems before they occur in the field

+ build in-field upgradeability

� The correct use of cryptographic primitives is
often essential

11/11

Thank you!

Q & A

