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Background

� On-Board Credentials is a framework by Nokia Research
Center for secure execution of third-party credentials on e.g. 
embedded devices

� The framework also includes a provisioning protocol by
which any third part can provision credentials onto the
platform

� A Fruct project (SUAI) was set up to analyze parts of the
framework, among other things the provisioning protocol

� A vulnerability was found by which the integrity of the
provisioned 3rd-party credentials programs could be
compromised

� The implementation of ObC was changed to correct the
found security vulnerability
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OnBoard Credential Platform
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Provisioning Protocol

� Goal: To allow any entity to provision secure 
data and program on the device. 

� Steps: 

� User send to device 

� Init = header || EncPK_D(FK)

� Xfer = AEFK(header, <secret>)

� Xfer = AEFK(header, <program>) or <program>

� Endorse = AEFK(header, H(<program>))

� Device: 

� If program wants to read secret it should have 
appropriate Endorse
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Attack on Provisioning Protocol

� Intruder 

� sniffs Endorse = AE(FK, header, 
H(<program1>))

� generates program2 for disclosing of secret

� generates program2 in such a way that 
H(<program2>)= H(<program1>)

Problem statement:

Find second pre-image for hash-function used 
in provisioning protocol
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Cryptographic Primitives

� There is a restriction on size of code which 
implements all cryptographic functions 
(encryption, hash, …)

� So, only one crypto-primitive (AES-EAX) was 
used as basis for all these functions

� Authenticated encryption

� Hash function

( , , , )AE AES EAX key header nonce data= −

( _ _ , )HASH AES EAX public hash key data= −
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AES-EAX Encryption Mode

� X = {x1,x2, … xn}

� OMACK(X)={

for i = 1 to n 

return(cn) }

� CTRK(X,N) = {

for i = 1 to n 

return(c1,c2,…,cn) }

0, 0n nx x pad c= ⊕ =

1( )ENC

i K i ic AES x c −= ⊕

( )ENC

i i Kc x AES N i= ⊕ +
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Hash Function Vulnerability

� Given:                       � Find:

� M, Hash(M)=T                 � mn+1 :

� Arbitrary                           Hash(M’|| mn+1) =T

M’ = {m1, m2, … mn}

The only restriction on M’ is |M’| =n*128
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Finding mn+1
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Conclusions

� A good, and flawless security design in the
end benefits the customer

+ independent design validation

+ validating implementations prior to deployment
can find problems before they occur in the field

+ build in-field upgradeability

� The correct use of cryptographic primitives is
often essential
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Thank you!

Q & A


