Video transmission over high-speed WPAN's based on low-power data compression

Eugeniy Belyaev¹, Andrey Turlikov¹ and Anna Ukhanova²

¹State University of Aerospace Instrumentation, Saint-Petersburg ²DTU Fotonik, Technical University of Denmark

November 4, 2009

Video transmission over high-speed WPAN's $^{\rm 1~2~3}$

• System properties:

- Transmission rate up to 6Gbps;
- Low-power data transmitter.

¹http://www.ieee802.org/15/pub/TG3c.html
²http://www.wirelesshd.org/
³http://wirelessgigabitalliance.org/

System restrictions and requirements

• System restrictions:

- Low-memory and low-complexity video processing;
- One-pass processing only is possible;
- System requirements:
 - Very low transmission latency (1-3 ms);
 - Continuous video playback at the receiver;
 - Acceptable visual quality for wide types of video sources:
 - sequences of computer graphics, snapshots;
 - ★ natural and mixed images.

Possible solutions

- Uncompressed video transmission¹;
- Intra single-layer video coding²;
- Intra scalable video coding³;
- Distributive video coding⁴.

¹H. Singh, Jisung Oh, Changyeul Kweon, Xiangping Qin, Huai-Rong Shao and Chiu Ngo, "A 60 GHz wireless network for enabling uncompressed video communication", *IEEE Communications Magazine*, 2008

²E. Belyaev, A. Dogadaev and A. Ukhanova. "MINMAX rate control in near-lossless video encoders for real-time data transmission", *XII International Symposium on Problems of Redundancy in Information and Control Systems*, 2009.

³M.Gallant and F. Kossentini, "Rate-distortion optimized layered coding with unequal error protection for robust Internet video", *IEEE Transactions on Circuits and Systems for Video Technology*, 2001.

⁴T. Kuganeswaran, X. Fernando, L. Guan, "Distributed video coding and transmission over wireless fading channel", *Canadian Conference on Electrical and Computer Engineering*, 2008.

Possible solutions comparison

Solution	Encoder	Decoder	Compression	Link/PHY
	complexity	complexity	efficiency	layers mod-
				ification
Uncompressed	very low	very low	very low	yes
video transmission				
Intra single-layer	low	low	medium	no
video coding				
Intra scalable video	medium	medium	low	partly
coding				
Distributive video	low	high	high	yes
coding				

< A

3

Agenda

Intra single-layer video compression and transmission over high-speed WPAN's

- H.264/AVC low-complexity single-layer video compression;
- Video transmission system description
 - End-to-end distortion in video transmission system;
 - End-to-end latency in video transmission system;
 - MINMAX optimization task description.
- Main idea of the video source rate control;
- Video transmission system model;
- Practical results;
- Future work.

H.264/AVC low-complexity single-layer video compression

- Low-memory INTRA solution (32 pixel lines);
- DC-Prediction only, 4x4 DCT only, CAVLC;
- Hash function calculation for temporal redundancy removal (by using SKIP macroblock type);

7 / 21

< A >

Proposed video transmission system scheme

- *Channel rate controller* chooses the transmission scheme that maximizes the channel throughput;
- Video source rate controller chooses the quantization step q_t and macroblocks type $m_t \in \{intra, skip\}$ to provide acceptable visual quality and continuous video playback for given channel throughput.

< □ > < □ > < □ > < □ > < □ > < □ >

3

End-to-end distortion in video transmission system

The end-to-end distortion d_t for unit t:

 $d_t = d(q_t) + d_c$,

 $d(q_t)$ is quantization distortion, d_c is distortion caused by channel errors. MINMAX quality criteria¹:

minimize $\max_t d_t$.

Packet loss probability for ARQ with n retransmissions:

$$p_t^n = (1 - (1 - BER)^l)^n$$
,

BER is bit error rate, / is packet length.

If $BER < 10^{-4}$ then *I* and *n* can be chosen to guarantee that $p_t^n < 10^{-10}$. Therefore, for further optimization we can **disregard packet losses** and minimize $d(q_t)$ only.

¹N. Cherniavsky, G. Shavit, M.F. Ringenburg, R.E. Ladner, E.A. Riskin, "Multistage: A MINMAX bit allocation algorithm for video coders", *IEEE Transactions on Circuits* and Systems for Video Technology, 2007.

Bit error rate in IEEE 802.15.3c¹

Eugeniy Belyaev (SUAI)

November 4, 2009

End-to-end latency in video transmission system

The number of bits in the encoder buffer after compression unit *t*:

$$b^{e}(t) = \max\{0, b^{e}(t-1) - c_{t}\} + r_{t}(q_{t}, m_{t}),$$

 c_t is number of bits that are transmitted during compression of the unit t, $r_t(q_t, m_t)$ is bit size of the compressed unit t.

Assume that data on the receiver side is accumulated for some time L after which the decoding and playing starts.

End-to-end latency $\Delta T = L$, if the number of bits in the encoder buffer¹ is $t = L + L \cdot f \cdot N$

$$b^e(t) \leq b_{eff}(t) = \sum_{i=t+1} c_i,$$

where $b_{eff}(t)$ is the effective buffer size², N is a number of units in the frame and f is a frame rate.

¹A.R. Reibman and B.G Haskell, "Constraints on variable bit-rate video for ATM networks", *IEEE Transactions on Circuits and Systems for Video Technology*, 1992.

²A. Ortega and M. Khansari, "Rate control for video coding over variable bit rate channels with applications to wireless transmission", *International Conference on Image Processing*, 1995.

MINMAX optimization task description

For high-speed video transmission we can use high-resolution quantization hypothesis¹ that defines distortion as $d(q) = q^2/12$, therefore MINMAX criteria corresponds to

$$\min_t q_t. \tag{1}$$

Let us formulate **rate control optimization task** according to the latency requirements and the MINMAX quality criteria. For each unit t it is necessary to choose the quantization step q_t , so that

$$\begin{pmatrix} \mininimize \max_{t} q_t \\ b^e(t) \le b_{eff}(t). \end{cases}$$
(2)

¹H. Radha, M. Dai, D. Loguinov, "Rate-distortion modeling of scalable video coders", *International Conference on Image Processing*, 2004.

Eugeniy Belyaev (SUAI)

Video transmission over WPAN's

November 4, 2009

9 12 / 21

Video source rate control

13 / 21

Solution of MINMAX task by consecutive search algorithm

Theorem 1. Consider \tilde{q} the MINMAX solution found by the consecutive search algorithm. There is no sequence of quantization steps y_1, y_2, \ldots for which $\max_t y_t < \tilde{q}$ that does not lead to the transmitter buffer overflow.

One-pass MINMAX video source rate control algorithm

Theorem 2. Consider that consecutive search algorithm finds the quantization step value \tilde{q} . Then for the proposed algorithm with initial value $q_0 \leq \tilde{q}$, the inequality $q_t < \tilde{q} + \Delta q^+$ holds true for any time moment t.

System model¹

¹S. Collonge, G. Zaharia, G. El Zein, "Influence of the human activity on wide-band characteristics of the 60GHz indoor radio channel", *IEEE Transactions on Wireless Communications*, vol.3, pp. 2396–2406, 2004

Eugeniy Belyaev (SUAI)

Video transmission over WPAN's

16 / 21

SNR/Throughput dependence for different MCS¹

¹IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c (TG3c), Contributions and documents, 2009.

Eugeniy Belyaev (SUAI)

Video transmission over WPAN's

November 4, 2009

Test video sequences

Breeze

Eugeniy Belyaev (SUAI)

November 4, 2009

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Practical results for Breeze

November 4, 2009

Practical results for Desktop

Future work

• It is interesting to solve the same optimization task for others video processing approaches and compare it with intra single-layer video compression approach.