Modern methods of increasing the information capacity of digital images

> Sergey Bezzateev (PhD, Prof), Natalia Voloshina (PhD, Ass. Prof), Peter Sankin (PhD St.)

> > SUAI, Russia

Contents

- Project description
- The goal of the presentation
- Main requirements for the methods
- Modern methods overview
- Image models overview
- Conclusions
- Future research plans

Project description

Increasing the information capacity of digital images in

telecommunication systems

- Nowadays a lot of digital images are used in different areas of life (at home, at work etc.).
- In many cases we need to have additional information about our images (information about author, time, places, etc.).
- It important to add such additional information while creating digital images.
- Part of this information may be obtained automatically (for example by mobile device: place - by GPS; time-by onboard clock, etc.), and other part could be added by user.
- It is possible to add this information using statistical and psychophysitial redundancy of digital images.

The goal of the presentation

- To make an overview of the modern methods of increasing Information Capacity and Image Models
- To show the way for more efficient increasing the Information Capacity of Digital Images
- To show the future research approaches

Main requirements for the methods of Increasing Information Capacity

- The method should:
 - add as much additional information as possible;
 - minimize increasing of resulting image size;
 - fast algorithms for Adding, Searching and Extracting of information;
 - ensure stable data storing;
 - add the information while creating digital image on device.
- The method shouldn't decrease visual quality of initial image.

Modern methods overview

- Formatted the possibility of information adding is defined by image file format:
 - By using format field specified for special type information
 - By using format fields that are not specified for special type information
 - By using additional extensions
- Unformatted the possibility of information adding is defined by digital image redundancy:
 - By adding information in time domain
 - By adding information in spectrum domain

Modern methods overview

Formatted methods examples:

- EXIF (Exchangeable Image File Format)
- GIF (Graphics Interchange Format)
- TIFF (GeoTIFF)
- Unformatted methods examples:
 - By adding information in time domain:
 - LSB methods
 - By adding information in spectrum domain:
 - DCT methods
 - DWT methods

Modern methods overview

Formatted methods:

- Main advantages:
 - Fast algorithms of adding and extracting additional information.
 - Is not limited by the level of redundancy (independent on image type).
- Main disadvantages:
 - Lost of information while changing format.
 - Increasing of resulting image file.
 - Do not use redundancy of digital image.

Unformatted methods:

- Main advantages:
 - Usage of digital image redundancy.
 - Less increasing of resultant image.
 - More stable for format transformations.
- Main disadvantages:
 - Slow algorithms of information adding/extracting
 - Limited by the redundancy level (image type)

- All the unformatted methods use image redundancy based on the human vision system features.
- Information is added by changing some parts of the insignificant areas of digital image
- Insignificant parts of image can be found according to image model.

Modern image models for non-graphic image type:

- Describe the value of the pixels:
 - RGB
 - YUV
- Describe the value of the transformation coefficients:
 - DCT
 - DWT
 - DFT
- Describe the object structure of the image:
 - Areas and boundaries

semantic and non-semantic details

Threshold contrast (TC)

$$\frac{\Delta L_s}{L_s} = \delta_1(a,\tau)(1 + \frac{c_1 L_a}{L_s})\sqrt{1 + \frac{G}{(1 + c_1 L_a / L_s)^2 L_s}}$$

13/21

•Areas of existing of DS-pix details (black -exist, white – not exist)

(black -exist, white – not exist)

Conjoint area of existing 1-, 2-, 3-pixel details Conjoint area of existing 1-7-pixel details with OTDS (black -exist, white – not exist) 15/21

Initial test image (Lena.bmp) Result test image (after preprocessing with OT^{DS})

DS, pix	0	1	2	3	4	5	6	7
OT ^{DS}		128	128	64	64	32	16	8
								16/21

Conclusions

- Modern methods of adding information to digital images do not use the redundancy completely.
- Modern image models do not use (or use very roughly) levels of visual significance
- Modern image models do not represent all the levels of significance in a correct way.
- It's possible to find a new image model (type 3) with multilevel significance and create a new more efficient algorithm for increasing the information capacity of the digital images.

Future research plans

- Investigation of the low-significant areas of the digital images for adding information.
- Development of a new model of the digital images that represents it as a number of different visual significance level parts.
- Applying of the error-correcting codes with unequal error protecting property for more effective usage of image redundancy for information adding methods based on the new model.

Thank you!

For more information, please contact Natalia Voloshina: natali@vu.spb.ru