"Modeling and analysis of WAP protocol family"

Marina Alekseeva, Ekaterina Dashkova, Ivan Vlasov. Yaroslavl State University

"So, what is WAP about?"

- WAP is a stack of protocols that are responsible for wireless Internet connection.
- Its history goes back to the 1997 when the WAP forum was organized by Nokia, Ericsson and Motorola.
- WAP was designed as an open standard for wireless data exchanging, independent from devices and services providers, it is a good decision for mobile hosts with a small display, little memory.

"The evolution"

- The first specification of WAP proposed a two-part connection scheme:
- split connection for accessing web content;

"The evolution" (Con.)

* end-to-end connections might be required either for security reasons or for specific applications;

WAP 2.0

WAP browsing setup end-to-end

"The evolution" (Con.)

- Version WAP 2.0:
- WAP maintains TCP, IP, http, protocols, that helps mobile host to ask the content from link sources omitting the provider server.
- Long timeout
- Connection resumption from the break point.
- Push technology.

"The problem"

* analyze a model of the WAP specification and perspectives of research and development in this field.

propose a modification for Wireless
 Transaction Protocol which improves the original flow control algorithm.

"Specification"

- Huge amount of various texts
- Difficulty in interrelating of all of these documents
- Basic features are buried under dozens of non relevant features

"The basis. WTP"

- WTP is responsible for packet segmentation and reassembly and for acknowledgment of packets and retransmission of lost, unacknowledged or corrupt packets.
- There are three classes of operation for this protocol:

```
☆ class-0,
☆ class-1,
☆ class-2.
```

WTP itself has no security mechanisms.

"Flow Control Algorithm"

- Prevent the receiver overload(Sliding Window);
- The sender can exercise flow control by changing the size of the packet groups depending on the characteristics of the network.

"WTP transmission model"

WTP packet loss

recovery

"Proposal"

- $t_s/t_r=1$ perfect network conditions.
- ▶ 0,85< $t_s/t_r < 1$ -increasing P_{am} , decreasing t_s and timeout (network works good).
- 0,70< t_s/ t_r <0,85 -there is no enough data to make a decision (conditions of a network correspond to the established parameters).

t_s/t_r <0,70 - decreasing P_{am}, increasing t_s
 and timeout (network congestion).

Proposal (0,85 < t_s / t_r <1)

- $k = t_s / t_r$ the parameter;
- > x = 1/(1-k)

$$\bullet \mathbf{P}_{am} = \mathbf{P}_{am} + 2^{x*}\mathbf{P}_{am};$$

 $t_s = t_s /(2^{x*} t_s);$ timeout = timeout /(2^{x*} timeout) (exponentially decrease timeout);

Proposal (0,7< t_s / t_r <0,85)

Do nothing!

Proposal ($t_s/t_r < 0,70$)

Decreasing the parameters:

 $k = t_s / t_r - the parameter;$

>
$$x = 1/(1-k)$$

$$\bullet P_{am} = P_{am} - x^* P_{am};$$

 $t_s = t_s + (x/2*t_s);$ timeout = timeout +(x/2* timeout);

"Conclusion"

The work includes new ideas of developing and improving WAP as one of the important contemporary technologies.

Future work

- To build the model of the modified protocol (Coloured Petri Nets, ns-2 etc.)
- To perform experiments that show the ability to adopt to changing networking conditions.
- Verification of the new protocol (LTL, CTL, CTL* etc.)

Thank you for attention!