A

Saint-Petersburg University of Aerospace Instrumentation

SystemC and SDL Co-Modelling Methods

Irina Lavrovskaya, Valentin Olenev, Alexander Stepanov, Alexey Rabin

Nov, 6th 2009

SDL—SystemC co-modeling

There are 3 ways of SystemC and SDL co-modeling in a
one communication system:

nsert SystemC into SDL (into the SDL Tools)
nsert SDL into SystemC (by compiling SDL to C code)

Run SDL and SystemC independently in an operating
environments by using a specific tool with an SDL &
SystemC interfaces

Insert SystemC into SDL

SDL can understand C code.

It is a feature of the Telelogic SDL Tool. So the
SDL/SystemC models integration could be broken into a
number of stages:

writing an SDL model

writing a pure C code to *.h file

include this *.h file to SDL model

writing a patch to convert SDL data types to C types

SystemC—SDL

Master

SDL Model
(runs in Telelogic tool)

t SDL data

SDL to C data types
convertor
(*.h file included to SDL)

A

C data

Slave

SystemC Model

\Damlil

SystemC data

SystemC channel

e
SystemC—SDL: Possible implementation

problems

e SDL could execute an *.h file written only in pure C, so
using of classes, inheritance and other features of C++
and SystemC imposes difficulties

 SDL data types can not be easily converted to C types.
For connection of this two models kind of “type
convertor” should be implemented.

e Hard to use additional C and C++ libraries (e.qg.
SystemC)

e

SystemC—SDL: Usability problems

e SDL model could be changed, but if there is a change
In a “bottom™ part of the model, possibly some updates
would be needed for “type convertor”

* A big percent of changes in the SystemC model will
cause a change in a channel which makes a call of
methods

Insert SDL into SystemC

e During the debug SDL is compiled into a pure C code
and environment which could be used for the
connection to C++/SystemC

e Connection of the SDL model and OS/application is
made by the modification of the environment

* An executable file is created by using of C-code of the
model, environment and additional libraries

* In dependence of the “make” mode we can create
MSC

SDL—-SystemC

OS task running SDT integration External OS task
SDLecode |
\ SDL model |
\ - - |
ﬂ ‘make’ SystemC-application

Compiled C code

e el S ‘

i SDL kernel \

4 (C code) y

S A
[C Ode N —_— L
[T
I

| iXOUtEnV: Enviroment i xInEnv i |

| : ! ' |
| L [
e Y

- A |
OS level h e
communication
Y

e

SDL—-SystemC: Possible implementation
problems

* Any modification of an SDL model needs to create
again all C-code and thereafter to make again the
whole project

* We only create an executable file. There are no other
ways provided to work with the project
(e.g. Simulator)

4 N
Use SDL and SystemC independently

» Could be implemented by passing the results through
a file

* Writing results to a file and reading them depends on
SystemC or SDL clocks.

* A special tool with interface will manage the SDL

model and SystemC model, read the file and show
the results.

- Still a question to further research, how to manage SDL
and SystemC tools correctly

* This tool could handle point-to-point work of two
SDL/SystemC systems.

e

Use SDL and SystemC independently

managing

ree—— e e == = =
| A J
|
| —> SDL Model SystemC Model
|
l A A
I data

\J
|
|

» File with results or data

managing data

|

|

|

|

| _| Tool with interface and | _ result
managing possibility |

Operating system

™~

a i
Conclusions

* Insert SystemC to SDL.:

« SDL could not use SystemC and C++ directly
- SDL data types could not be easily converted to C types

* Insert SDL to SystemC.:

* Whole SDL project is compiled into a single huge C file
» Every change in SDL causes the change in a system

* Run SDL and SystemC using special tool:
» More programming, less research issues
* Needs more resources from the computer
* All the modeling results in SystemC and SDL parts could be
seen
* The most flexible way: changes in one model won't touch
the other parts

Thank you!

