Tools tor tinding resource

leakages (final)

Sergei lvanov, SUAI
Supervisor: Eero Tamminen, Maemo devices

Resource leakage

Memory:

void test_malloc()

d
char *x = MULL, *w = NULL;
*» = malloc(l23 ¥ sizeof(char));
w o= mallocg456 % sizeof{char)l;

FreaC:d;

o Leakage of size 456 bytes
Leakages finding:

o Endurance testing (previous project) — determine only existence of
leakages

o Shows process memory usage from system point of view
But couldn’t determine place of leakage (source file, line number)

New project: changes in different types of resources (not only
memory)

[2/13]

Resource types

Memory
File descriptors

GObject

o Has some similarity with memory

o Usedin GTK

o May include several types of resources with different sizes

o In Maemo up to v5 software typically uses GObiject as the base
object type

Memcpy

o Too many memcpy’s leads to hi load of memory and CPU

Threads

o Usedin GTK

o When joinable thread haven’t been joined during application lifetime,
kernel cannot release thread related resources (stack etc)

[3/13]

Leakage finding technology

Program is traced by some specialized tool

When resource allocation or deallocation occurs, stack of function
calls (backtrace) is dumped to the log file

o Usually backtrace contains pointers to functions and looks like:

0. [01:41:53.744754] block™ at 0x0o3ef200 with size 24
AlibAS1ibhe, so.60wesdup+0x2al) [Oxb7e3d7Ba]
SSmemory_1leaks(test_wosdup+0x26) [0xB04859a4]
Smemory_1leaks [DxEDdEQec?

Amemory_1leaks [0x8048919]
Asmemory_lleaks [0x8048a13]
Smemory_1leaks [0xB048a30]
Smemory_1leaks [0x8048a4d]

o Name resolving is needed:

O, [01:41:53.744754] block(24) = 0x093efz200
Oxh7e3d78a: wosdup+0x2a €C) Cin 1ibc-2.5.=0)
Ox080489a4 1 test_wesdup (memory. c:111 n memary_1leaks)
Ox08048%ec: do_backtrace (memory.c:126 in memory_1lleaks)
Ox080485%FG: x Cmemary.C:133 in memory_lleaks)
Ox08048a313: h (memory.c:140 in memory_1leaks)
Ox08048a30: g tmemary. c:141 in memory_lleaks)
Ox08048add: Cmemary. c:142 in memory_lTeaks])

Log files are rather big
o Filtrate logs to keep only resource leakages (post filtration)

[4/13]

Existed tools for finding resource leakages

Tool functracer | latrace libleaks mpatrol
Tracked memory, file | Couldn’t distinguish | memory, gobject memory,
type of resources memcpy
resources
Name Extra tool Built in Extra tool Built in
resolving
Post filtration | Needed Needed Built in Built in
Rebu”ding Not needed Not needed Needed Needed
application | .
n newest version
source codes et roeded
Shortcomings Could not Logging backtraces | Too few resource | Too few
trace threads | only inside dynamic | types, sources resource types,
libraries recompilation static linking

Valgrind

o Too heavy for mobile device (consumes a lot of system resources)

o Thereis no version for arm architecture

[5/13]

Existed tools for finding resource leakages

Functracer
o http://repository.maemo.org/pool/maemo4.1.2/free/f/functracer/

Latrace
o http://people.redhat.com/jolsa/latrace/index.shtml

Libleaks
o Not free yet
o Planned to be open source

Mpatrol
o http://mpatrol.sourceforge.net/

[6/13]

Problems and aims

Not all resource types are supported

o Extension of existed tools

Big log files are hard for manual processing
o Visualization is needed

Visualization of resource leakages and inefficient resources
utilization

o Are non freed resource allocations existed?

o What functions have biggest resource leakages size?

o What is amount of resource leakages during program lifetime?
o What functions have biggest amount of allocated resources?

[7/13]

Extending of existing tools

mpatrol and libleaks haven’t any mechanisms of
extension

functracer

o GObject resource added

o Memcpy added

o Improved support of memory and file resources

latrace

o GObject
File
Memcpy
Memory
Thread

o O o o

[8/13]

Resource lifetime diagram

counter

2.9

8.5

resource: file, type: lifetine

' ' ' ' ' ' ' pxBenscon —+——
PxBeABEIL ——

1 1 1 1 1 1 1
= = = = = = =
o o o o = o =
[] L] L] L] L] L] L]
- = = o] = = =
[T] =] &= [T
=T - =T - T} Ty] I}
- - - - - - -
mn Lot mn Lot] n]
tine

[9/13]

‘ Call tree (backtraces)

Functions through which at least 0% of the wotal allocations were done

memory: man
005 (4KB / 22

memory:
1005 (4K / 22)

memory: g
100¥5 (4K / 22)

memory: h
100¥5e (4K / 22)

MEmOry: X
100¥% (4KB / 22)

memiry: do_backirace
1005 (4B / 22)

[10/13]

Resource leakages visualization

Different tools have different log files
o Common log file format is needed

converter :% functracer-postproc

mpatrol

latrace
functracer

libleaks

=

Timeline
Callgraph

functracer-visual

Functracer-postproc — open source tool for name resolving and

finding leakages

Functracer-visual (developed in the project):
o Converter — tool for conversion of logs to common format
o Timeline — tool for visualization of resource lifetimes

o Callgraph — tool for visualization backtraces to leakages placements

[11/13]

Results

Some existed tools are extended

o Functracer

Memcpy

GObject

Improved support of memory and file resources
o Latrace

Differentiation of resource types
Functracer-visual package:
o Converter from different logs formats to one common format
o Tools for visualization of resource leakages

Callgraph

Timeline

[12/13]

Thanks for attention!
Any questions?

[13/13]

