
Tools for finding resource 
leakages (final)

Sergei Ivanov, SUAI
Supervisor: Eero Tamminen, Maemo devices



[2/13]

Resource leakage
 Memory:

 Leakage of size 456 bytes
 Leakages finding:

 Endurance testing (previous project) – determine only existence of 
leakages

 Shows process memory usage from system point of view
 But couldn’t determine place of leakage (source file, line number)
 New project: changes in different types of resources (not only 

memory)



[3/13]

Resource types
 Memory
 File descriptors
 GObject

 Has some similarity with memory
 Used in GTK
 May include several types of resources with different sizes
 In Maemo up to v5 software typically uses GObject as the base 

object type
 Memcpy

 Too many memcpy’s leads to hi load of memory and CPU
 Threads

 Used in GTK
 When joinable thread haven’t been joined during application lifetime, 

kernel cannot release thread related resources (stack etc)



[4/13]

Leakage finding technology
 Program is traced by some specialized tool
 When resource allocation or deallocation occurs, stack of function 

calls (backtrace) is dumped to the log file
 Usually backtrace contains pointers to functions and looks like:

 Name resolving is needed:

 Log files are rather big
 Filtrate logs to keep only resource leakages (post filtration)



[5/13]

Existed tools for finding resource leakages

Too few 
resource types, 
static linking

Too few resource 
types, sources 
recompilation

Logging backtraces
only inside dynamic 
libraries

Could not 
trace threads

Shortcomings

NeededNeeded

In newest version 
not needed

Not neededNot neededRebuilding 
application 
source codes

Built inExtra toolBuilt inExtra toolName 
resolving

Built inBuilt inNeededNeededPost filtration

memory, 
memcpy

memory, gobjectCouldn’t distinguish 
type of resources

memory, fileTracked 
resources

mpatrollibleakslatracefunctracerTool

 Valgrind
 Too heavy for mobile device (consumes a lot of system resources)
 There is no version for arm architecture



[6/13]

 Functracer
 http://repository.maemo.org/pool/maemo4.1.2/free/f/functracer/

 Latrace
 http://people.redhat.com/jolsa/latrace/index.shtml

 Libleaks
 Not free yet
 Planned to be open source

 Mpatrol
 http://mpatrol.sourceforge.net/

Existed tools for finding resource leakages



[7/13]

Problems and aims
 Not all resource types are supported

 Extension of existed tools
 Big log files are hard for manual processing

 Visualization is needed

 Visualization of resource leakages and inefficient resources 
utilization
 Are non freed resource allocations existed?
 What functions have biggest resource leakages size?
 What is amount of resource leakages during program lifetime?
 What functions have biggest amount of allocated resources?



[8/13]

Extending of existing tools
 mpatrol and libleaks haven’t any mechanisms of 

extension
 functracer

 GObject resource added
 Memcpy added
 Improved support of memory and file resources

 latrace
 GObject
 File
 Memcpy
 Memory
 Thread



[9/13]

Resource lifetime diagram



[10/13]

Call tree (backtraces)



[11/13]

Resource leakages visualization
 Different tools have different log files

 Common log file format is needed

 Functracer-postproc – open source tool for name resolving and 
finding leakages

 Functracer-visual (developed in the project):
 Converter – tool for conversion of logs to common format
 Timeline – tool for visualization of resource lifetimes
 Callgraph – tool for visualization backtraces to leakages placements



[12/13]

Results
 Some existed tools are extended

 Functracer
 Memcpy
 GObject
 Improved support of memory and file resources

 Latrace
 Differentiation of resource types

 Functracer-visual package:
 Converter from different logs formats to one common format
 Tools for visualization of resource leakages

 Callgraph
 Timeline



[13/13]

Thanks for attention!
Any questions?


