
Tools for finding resource 
leakages (final)

Sergei Ivanov, SUAI
Supervisor: Eero Tamminen, Maemo devices



[2/13]

Resource leakage
 Memory:

 Leakage of size 456 bytes
 Leakages finding:

 Endurance testing (previous project) – determine only existence of 
leakages

 Shows process memory usage from system point of view
 But couldn’t determine place of leakage (source file, line number)
 New project: changes in different types of resources (not only 

memory)



[3/13]

Resource types
 Memory
 File descriptors
 GObject

 Has some similarity with memory
 Used in GTK
 May include several types of resources with different sizes
 In Maemo up to v5 software typically uses GObject as the base 

object type
 Memcpy

 Too many memcpy’s leads to hi load of memory and CPU
 Threads

 Used in GTK
 When joinable thread haven’t been joined during application lifetime, 

kernel cannot release thread related resources (stack etc)



[4/13]

Leakage finding technology
 Program is traced by some specialized tool
 When resource allocation or deallocation occurs, stack of function 

calls (backtrace) is dumped to the log file
 Usually backtrace contains pointers to functions and looks like:

 Name resolving is needed:

 Log files are rather big
 Filtrate logs to keep only resource leakages (post filtration)



[5/13]

Existed tools for finding resource leakages

Too few 
resource types, 
static linking

Too few resource 
types, sources 
recompilation

Logging backtraces
only inside dynamic 
libraries

Could not 
trace threads

Shortcomings

NeededNeeded

In newest version 
not needed

Not neededNot neededRebuilding 
application 
source codes

Built inExtra toolBuilt inExtra toolName 
resolving

Built inBuilt inNeededNeededPost filtration

memory, 
memcpy

memory, gobjectCouldn’t distinguish 
type of resources

memory, fileTracked 
resources

mpatrollibleakslatracefunctracerTool

 Valgrind
 Too heavy for mobile device (consumes a lot of system resources)
 There is no version for arm architecture



[6/13]

 Functracer
 http://repository.maemo.org/pool/maemo4.1.2/free/f/functracer/

 Latrace
 http://people.redhat.com/jolsa/latrace/index.shtml

 Libleaks
 Not free yet
 Planned to be open source

 Mpatrol
 http://mpatrol.sourceforge.net/

Existed tools for finding resource leakages



[7/13]

Problems and aims
 Not all resource types are supported

 Extension of existed tools
 Big log files are hard for manual processing

 Visualization is needed

 Visualization of resource leakages and inefficient resources 
utilization
 Are non freed resource allocations existed?
 What functions have biggest resource leakages size?
 What is amount of resource leakages during program lifetime?
 What functions have biggest amount of allocated resources?



[8/13]

Extending of existing tools
 mpatrol and libleaks haven’t any mechanisms of 

extension
 functracer

 GObject resource added
 Memcpy added
 Improved support of memory and file resources

 latrace
 GObject
 File
 Memcpy
 Memory
 Thread



[9/13]

Resource lifetime diagram



[10/13]

Call tree (backtraces)



[11/13]

Resource leakages visualization
 Different tools have different log files

 Common log file format is needed

 Functracer-postproc – open source tool for name resolving and 
finding leakages

 Functracer-visual (developed in the project):
 Converter – tool for conversion of logs to common format
 Timeline – tool for visualization of resource lifetimes
 Callgraph – tool for visualization backtraces to leakages placements



[12/13]

Results
 Some existed tools are extended

 Functracer
 Memcpy
 GObject
 Improved support of memory and file resources

 Latrace
 Differentiation of resource types

 Functracer-visual package:
 Converter from different logs formats to one common format
 Tools for visualization of resource leakages

 Callgraph
 Timeline



[13/13]

Thanks for attention!
Any questions?


