
Generating Modest High-Level Ontology Libraries for Smart-M3

Dmitry G. Korzun, Alexandr A. Lomov, Pavel I. Vanag
Department of Computer Science

Petrozavodsk State University, PetrSU
Petrozavodsk, Russia

Email: {dkorzun, lomov, vanag}@cs.karelia.ru

Sergey I. Balandin, Jukka Honkola
Nokia Research Center

Nokia
Helsinki, Finland

Email: {sergey.balandin, jukka.honkola}@nokia.com

Abstract—Web ontology language (OWL) allows structuring
smart space content in high-level terms of classes, relations
between them, and their properties. In Smart-M3, a semantic
information broker (SIB) maintains the smart space in low-
level terms of triples, based on resource description frame-
work (RDF). This paper describes SmartSlog, our solution
for constructing Smart-M3 knowledge processors (KPs) that
consume/produce smart space content according to high-level
ontology terms. The solution is based on the code generation
approach. Given an OWL ontology description, the SmartSlog
generator maps OWL to the ontology library. It provides
1) API to communicate with SIB and 2) data structures to
represent in KP code all ontology classes, relations, properties,
and individuals. As a result, the developer easier constructs the
KP code, thinking in high-level ontology terms instead of low-
level RDF triples. SmartSlog is oriented to ubiquitous systems;
the library is modest to the device capacity; it is written in
ANSI C, supports even small embedded devices with restricted
performance, and allows interoperable applications.

Keywords-Smart spaces; Smart-M3; OWL/RDF ontology;
code generator; knowledge processor; low-performance devices

I. I NTRODUCTION

A smart space is a virtual, service-centric, multi-user,
multi-device, dynamic interaction environment that applies
a shared view of resources [1], [2]. Information conforms to
ontological representation with subject–relation(predicate)–
object triples as in semantic web [3]. Triples are represented
using Resource Description Framework (RDF). A number
of devices may access information via semantic information
brokers (SIBs), which also support information reasoning.

A client application consists of one or more knowledge
processors (KPs) running on various user’s devices (Fig-
ure 1). KPs act cooperatively forming a publish/subscribe
system [4]. Each KP can be thought as an agent using the
smart space as a shared knowledge space. The KPs produce
(insert, update, remove) and/or consume (query, subscribe,
unsubscribe) information in a smart space. The smart space
access protocol (SSAP) implements the SIB↔ KP commu-
nication, using operations with RDF content as parameters.

A KP may provide information for the smart space and
use information provided by other KPs. The information
content is not restricted in any way—it may be information
relating to the physical environment, to the KPs themselves

or anything. Thus, multiple KPs from multiple vendors
may share ad-hoc information across numerous domains,
enabling cross-domain and cross-platform interoperability.

Application examples include context gathering in meet-
ings [5], meeting room smart space [6], smart home [7],
gaming, wellness and music mashup [8] and social net-
works [9].

Smart-M3 [10] (Multidomain, Multidevice, and
Multivendor) is an open software platform [11] that
implements the smart space concept. Smart-M3 has been
developed by a consortium of companies and within
research projects: Artemis JU funded Sofia project (Smart
Objects for Intelligent Applications) and Finnish nationally
funded program DIEM (Device Interoperability Ecosystem).

Real-life scenarios often involve a lot of information,
which leads both to largish ontologies and possibly complex
instances that the KPs need to handle. Thus, programming
KPs on the level of SSAP operations and RDF triples bring
unnecessary complexity for the developers, who have to
divert effort for managing triples instead of concentrating on
the application logic. The OWL representation of knowledge
as classes, relations between classes, and properties maps
quite well to object-oriented paradigm in practice (but notso

Figure 1. Smart spaces form a publish/subscribe system in a ubiquitous
environment: KPs run on various types of computers and devices, the dis-
tributed knowledge store supports reasoning over cross-domain information



well in theory). Therefore, it is feasible to map OWL classes
into OO classes and instances of OWL classes into objects1

in programming languages. This approach effectively binds
the subgraph describing an instance of an OWL class to an
object in a programming language.

This paper describes the SmartSlog ontology library gen-
erator tool, our solution for allowing the construction of
Smart-M3 KPs by programming with domain concepts that
encoded in the relevant ontology.

SmartSlog is an ANSI C library generator for Smart
Space ontology [12]. The generator maps an OWL ontology
description to ANSI C code (ontology library), abstracting
in KP code the ontology and communication with SIBs.

SmartSlog library simplifies constructing KP code. The
code manipulates with ontology classes, relations, and in-
dividuals using predefined data structures and library API.
The number of domain elements in KP code is reduced
compared with the low-level triple-based scheme. The API
are generic, hence does not depend on concrete ontology;
all ontology entities appear as arguments in API functions.
Search requests to SIB are written compactly by defining
only what you know about the object to find (even if the
object has many other properties).

The SmartSlog tool is constructed to take into account
the limited resources available on small computers such
as mobile and embedded devices. For example, the KP
code does not need to maintain the whole ontology as
unused entities can be removed. Also, triples are not kept
indefinitely as the memory is freed immediately after the use.
Furthermore, even if a high-level ontology entity consistsof
many triples, its synchronization with SIB transfers only a
selected subset, saving on communication. These features
make it possible to use SmartSlog when developing KPs for
small devices—devices that are expected to play a central
role in ubiquitous environments.

The rest of the paper is organized as follows. Section II
briefly discusses related work Section III introduces the
SmartSlog with its architectural and implementation details.
Section IV presents generic SmartSlog library API and data
structures. Section V describes SmartSlog optimizations.
Section VI shows an example of application construction.
Section VII concludes the paper.

II. RELATED WORK

SmartSlog is closely related to code generators for C/GLib
Smart-M3 KP API and Smart-M3 Python KP API, as they
all use a common back-end for analyzing the ontologies and
creating a model for code generation (Smart-M3 CodeGen
in [11]). Also, the ontology APIs for generated by SmartSlog
and the C/GLib generator are very similar. However, the
code generated by SmartSlog is more concerned with ade-
quate performance even on low-end devices. For example,

1These objects only have attributes, but no methods and thus no behavior

dependencies are kept to minimum and memory usage is
predictable and bounded.

Ontology based code generation facilities are also pro-
vided as part of the Sofia application development kit
(ADK) [13] for Java-based KPs. The Sofia ADK is an
Eclipse-based toolset for creating smart space applications.
The view towards software developer is very similar to the
SmartSlog, namely providing programming language view
to the concepts defined in an ontology.

Similar ideas also exist in the semantic web world,
with projects aiming to provide object-RDF mapping2 li-
braries. These libraries are typically not tied to any ontology
and implemented in interpreted languages, such as RD-
FAlchemy [14] in Python or Spira [15] in Ruby. Obviously
the approach is very difficult both to implement and to use
in statically typed compiled languages such as C, while very
convenient in dynamically typed, interpreted languages.

III. O NTOLOGY L IBRARY ARCHITECTURE

SmartSlog is built into the base Smart-M3 ontology
library generation scheme (Smart-M3 CodeGen in [11]), see
Figure 2). For a KP developer, the use scenario consists
of two basic steps. First, she (thinking in ontology terms)
provides a problem domain specification as an OWL descrip-
tion. The generator inputs the specification and outputs the
ontology library. The latter is an interface that eliminates the
developer from low-level triple-based details. Second, she
uses the library when writing her KP code. The KP logic is
implemented in high-level terms of the specified ontology.
Note that the developer can easily start coding from KP
template and Makefile generated optionally.

An ontology library generator uses a static tem-
plates/handlers scheme. Code templates are “pre-code” of
data structures that implement ontology classes and their
properties. Since names of ontology entities depend on a
given ontology, each template contains a tag〈name〉 instead
of every proper name. The generator has a set of handlers;
each handler transforms one or more templates into final
code replacing tags with the names taken from the ontology.

The transformation happens during ontology RDF graph
traversal based on Jena OWL framework [16]. The latter
constructs a meta-model to represent the graph. The gener-
ator comprehensively traverses this model, and those nodes
are visited that a handler needs to transform its templates
into final code.

Templates and their handlers are device-aware. The
dependence is resolved on the level of a mediator li-
brary that implements triple-based ontology operations for
RDF elements and SIB communication. SmartSlog uses
KPI low [17] as a mediator library, oriented to small em-
bedded devices and ANSI C programming.

2In the spirit of object-relational mapping



− data structures
− operations
− optimizations

API:

Ontology Lib

Device

specification
Problem domain

OWL ontology

(Java based)

OWL Framework

Jena

− insert/remove/update
− subscribe/populate

KP instance

of ontology
RDF graph

Meta−model

− templates
− handlers

SmartSlog

− templates

OntLibGenerator

− handlers

program that
implements
KP logic

KP code

Generators

− classes

− properties

− relations

representation

Mediator Lib

SIB communication, RDF support

Smart−M3 Space

is input to

publish/suscribe

2

1

is traversed according
to tags in templates

developer

− instances of classes (individuals)
− values of properties (datatype & object)

. . .
constructs

uses

thinks in terms of

outputs
uses

writes

runs as

running KP

KP template, Makefile

provides

Optionally:

Figure 2. Smart-M3 ontology library generation scheme. Each OntLibGenerator implements own code templates and handlers oriented to a specific
mediator library. SmartSlog extends the set of available generators for producing libraries on the top of KPIlow interface (for low-performance devices)

A SmartSlog library consists of two parts: dependent
and independent on the given ontology (Figure 3). The
SmartSlog generator produces ontology-dependent parts. It
is implemented on the top of Smart-M3 CodeGen and uses
own ANSI C templates (oriented to KPlow interface). The
whole ontology can be represented in several files.

The generator iteratively calls the Jena meta-model. The
corresponding templates are loaded and processed, and the
final code is generated in files〈name〉 .c and 〈name〉 .h,
where 〈name〉 is the ontology file name. The code imple-
ments all ontology classes and properties as structures in C.
Note that the generated code can be optimized further by
removing ontology entities unused in the KP.

The ontology-independent part contains API: basic data
structures (for generic ontology class, property, and individ-
ual) and functions for their manipulation. The code structure
is shown in Table I. SmartSlog API uses KPIlow when
communicating with SIB. Hence, the ontology-independent
part implements all high-level ontology entity transforma-
tions to low-level triples and vice versa.

This library division into two parts allows constructing
efficient applications. If the ontology changes the ontology-
independent part does not require recompiling; it can be
shared by several KPs that use different ontology. Ontology-
dependent part can be shared by KPs with the same ontology.
These cases are typical since multiple smart space applica-
tions with different ontology can run on the same device as

Figure 3. The SmartSlog ontology library architecture: ontology-dependent
and ontology-independent parts

well as multiple KPs form one smart space application.
Optionally the generator produces a template for KP code

(and Makefile) with functionmain(). In the beginning,
it initializes local ontology structures and joins the smart
space. In the end, it leaves the smart space gracefully. In
between, the developer inserts own code (KP logic).

IV. L IBRARY API

SmartSlog API evolves over the generic API of Smart-M3
CodeGen [11]. “Generic” means that API does not depend
on ontology: classes, properties, and individuals appear as
arguments in API functions. Datatype and object properties



TABLE I
SMARTSLOG CODE STRUCTURE FOR ONTOLOGY-INDEPENDENT PART

Files *.c and *.h Description Fnc/Str LOC/COM
generic.h Declarations of all API data

structures and functions.
0/0 13/21

structures Base data structures and
functions for them.

11 / 4 201 / 214

classes Manipulation with classes. 20 / 0 318 / 221

properties Manipulation with proper-
ties.

28 / 0 550 / 312

Sum: 59 / 4 1082 / 768
ss_func Access to smart space (join-

ing, leaving, . . . ).
5 / 0 34 / 35

ss_classes Manipulation with classes in
smart space.

15 / 0 344 / 412

ss_properties Manipulation with proper-
ties in smart space.

12 / 0 351 / 383

ss_populate Population of individuals
from smart space.

2 / 0 62 / 107

ss_subscribe Subscribe containers and
functions.

24 / 3 483 / 179

Sum: 58 / 3 1274 / 1116
kpi_interface Interface to KPIlow (triple

transformation).
9 / 0 401 / 299

utils/* Auxiliary defs&funcs. Un-
used directly in KP code.

51 / 3 540 / 641

Sum: 60 / 3 941 / 940
TOTAL: 177 / 10 3297 / 2824

Fnc/Str counts the number of functions and structures.LOC/COM was
computed by the CCCC tool [18].

are treated similarly. Run-time checking must be performed
for arguments.

In SmartSlog, each ontology class, property, and individ-
ual is implemented as a C structure (typesproperty_t,
class_t, and individual_t). The API has generic
functions that handle such data objects regardless of their
real ontology content. Currently supported OWL constraints
are class, datatypeproperty, objectproperty, domain, range,
and cardinality. For example, a class knows all its su-
perclasses, OWL one of classes, properties, and instances
(individuals); the implementation is as follows.

typedef struct class_s {
int rtti; /* run-time type information */
char *classtype; /* type of class, name */
list_t *superclasses; /* all superclasses */
list_t *oneof; /* class oneof value */
list_t *properties; /* all properties*/
list_t *instances; /* all individuals */

} class_t;

API functions are divided into two groups: for manipu-
lating with local objects and for communicating with SIB.
The first group (local) includes functions for

• classes and individuals: creating data structures and
manipulating with them locally;

• properties: operations set/get, update, etc. in local store
(also run-time checks for correctness, e.g., cardinality
and property values).

For example, creating individual and setting its properties:

individual_t *aino = new_individual(CLASS_WOMAN);
set_property(aino, PROPERTY_LNAME, "Peterson");

Figure 4. Ontology for humans and their drinks

In this example, the definitions ofCLASS_WOMAN and
PROPERTY_LNAME are in the library ontology-dependent
part for the ontology shown in Figure 4. (We used GrOwl
tool [19]: classes are in blue rectangles, datatype properties
are in brown ovals, object properties are in blue ovals.)

The second group (to/from smart space) has prefix “ss_”
in function names and allows accessing smart space for

• individuals: insertion, removal, and update;
• properties: similarly to the local functions but the data

are to/from smart space (it requires transformation
to/from triples and calling the mediator library);

• querying for individuals in smart space (existence,
yes/no answer);

• populating individuals from smart space by query or by
subscription.

For example, inserting an individual and then updating some
of its properties:

ss_insert_individual(aino);
. . .

ss_update_property(aino,
PROPERTY_LNAME, "Ericsson");

Subscription needs more discussion. In advance, a sub-
scription container is created to insert those individuals
which to subscribe for. Optionally, the container inserts the
properties whose values are interested only. Then KP explic-
itly subscribes for selected properties of selected individuals.

Subscription is synchronous or asynchronous. The former
case is simplest; KP is blocked waiting for updates. Even de-
vices without thread support allow synchronous subscription.
The latter case is implemented with a thread that controls
updates from smart space and assigns them to the containers.
KP is not blocked, and updates come in parallel.

Internally, communication with SIB leads to the compo-
sition/decomposition of high-level ontology entities from/to
triples and calling KPIlow for triple-based data exchange.

SmartSlog API covers all basic primitives of a pub-
lish/subscribe system. Compared with Smart-M3 CodeGen
that provides similar primitives, SmartSlog API has the
following advantages. Smart-M3 CodeGen API depends on
glib library, e.g., using list data structures. Low-performance
devices do not support glib. In contrast, SmartSlog has no
such requirements for underlying libraries. Smart-M3 Code-
Gen currently does not allow asynchronous subscription
important for some smart space applications.



SmartSlog extends generic API by patterns for
ontology-based filtering and search. Each pattern is
an individual_t structure and can be thought as an
abstract individual where only a subset of properties is set.
A pattern is either pattern-mask or pattern-request.

A pattern-mask is for selecting properties of a given a
class or individual. It needs when a subset of properties is
used, and the pattern includes only those properties. Then
this pattern is applied to the given class or individual, e.g. for
modest updating the properties. For example, let us update
only the last name of “Aino” (see the ontology in Figure 4).

individual_t *aino_p = new_individual(CLASS_WOMAN);
set_property(aino_p, PROPERTY_LNAME, NULL);
ss_update_by_pattern(aino, aino_p);

As a result, only the last name value is transferred to
smart space. Compared withss_update_property()
the benefit becomes obvious when KP needs to update
several properties at once or it can form the property subset
only in run-time. The same scheme works for population to
transfer data modestly from smart space.

A pattern-request is for compact definition of search
queries to smart space. A pattern is filled with those prop-
erties and values that characterize the individual to find. For
example, let us find all men whose first name is “Timo” and
wife’s first name is “Aino”.

individual_t *timo_p =
new_individual(CLASS_MAN);

individual_t *aino_p =
new_individual(CLASS_WOMAN);

set_property(timo_p, PROPERTY_FNAME, "Timo");
set_property(aino_p, PROPERTY_FNAME, "Aino");
set_property(timo_p, PROPERTY_HAS_WIFE, aino_p);

timo_list = ss_get_individuals_by_pattern(timo_p);

In this example, two patterns (“Timo” and “Aino”) and
two properties (datatype “fname” and object “haswife”)
form a subgraph. The SmartSlog library matches the sub-
graph to the smart space content. As a result, a list of
available individuals is returned. Currently, searching leads
to iterative triple exchange and matching at the local side.In
future, it can be implemented on the top of SPARQL [20],
and the most processing moves to the SIB side.

V. I MPLEMENTATION OPTIMIZATIONS

SmartSlog is primarily oriented to low-performance de-
vices [21] and uses a limited subset of ANSI C [22].
SmartSlog does not optimize its mediator library (KPIlow).
Instead, SmartSlog optimizes local data structures, the
(de)composition (to)from triples, and the way how the me-
diator library is used. Some of these optimizations are also
usable for computers with no hard performance restrictions.

Each ontology entity is implemented as a C structure of
constant size. For ontology withN entities the SmartSlog
ontology-dependent part is of sizeO(N). In many problem

domains, however, the whole ontology contains a lot of
classes and properties.

SmartSlog provide constants that limits the number of
entities, hence the developer can control the code size.
Furthermore, one KP often needs only a subset of them (see
our example in Section VI). SmartSlog allows the developer
to select what ontology entities she needs in KP code (or
to deselect unneeded). Currently, it is implemented with a
simple mechanism based on #{define, ifdef} C compiler
preprocessor directives.

Inserting and receiving individuals to and from smart
spaces lead to transferring a lot of triples. The network traffic
can be reduced by transfer a subset only. SmartSlog API
allows the KP developer to explicitly select (using patterns,
see Section IV) what properties to use in an operation. That
is, even if an individual in the smart space has dozens of
properties, KP can populate only few of them (the others
are unused this time). Moreover as we discussed above, KP
can also deselect totally unneeded properties from its code.

As a result, KP works locally with a subset of properties
required by KP semantics at current time instance. There is
no need to load/save all properties from/to the smart space.

Smart-M3 CodeGen keeps a triple store—a local cache of
smart space content. For large ontology it is expensive. In
contrast, SmartSlog does not intend to store any triple for
long time. Ontology entities are stored in own structures.
When a triple is needed it is created and processed. Then
the memory is freed immediately after the usage.

SmartSlog supports both types of subscriptions: syn-
chronous and asynchronous. The latter case requires thread-
ing. SmartSlog uses POSIX threads [23] available on many
embedded systems [21]. Nevertheless, SmartSlog allows
switching the asynchronous subscription off if the target
device has no thread support.

VI. U SE CASE EXAMPLE

In this section, we show how SmartSlog can be used for
constructing a simple Smart-M3 application. In spite of the
simplicity, the example illustrates such SmartSlog features as
patterns and subscriptions (synchronous and asynchronous).
Both datatype and object properties are used.

Let Ericsson’s family consist of Timo (husband) and Aino
(wife). Timo likes drinking beer outside home. Aino has to
control Timo’s drinking via monitoring the amount of beer
he has drunk already. If the amount is exceeding a certain
bound (e.g.,MAX_LITRES_VALUE=3) she notifies Timo
by SMS that it’s good time to come back to home.

The ontology for such personal human data was shown
in Figure 4 above. When Timo starts drinking he associates
his object property “drinks” with class “Beer”. Then Timo
keeps his drink counter “numberof drinks” in smart space
and regularly updates it. Aino can subscribe to this counter.

For messaging, the family uses the ontology shown in
Figure 5. Aino sends SMS to notify Timo via smart space.



Figure 5. Ontology for messaging

Timo subscribes for SMS and checks each SMS he received
for who sent it (by phone number). Hence Timo recognizes
a notification SMS from his wife.

Given these two ontology files, SmartSlog generator pro-
duces filesdrinkers.{c, h}. Since the ontology includes
more details than needed for this application, excessive
classes and properties can be disabled in the final code by
compiler preprocessor directives.

The KP code for Timo can be constructed with SmartSlog
using the following scheme.

1. Create Timo, set his properties, and insert the individual
to the smart space.

individual_t *timo = new_individual(CLASS_MAN);
set_property(timo,PROPERTY_FNAME, "Timo");

. . .
ss_insert_individual(timo);

2. Timo keeps his counter in the smart space.

individual_t *beer = new_individual(CLASS_BEER);
ss_set_property(timo, PROPERTY_DRINKS, beer);

3. Timo subscribes to SMS from Aino: creating an in-
dividual for SMS and filling the subscribe container. Then
asynchronous (parameter “true”) subscription starts.

individual_t *sms = new_individual(CLASS_SMS);
add_data_to_list(subscribed_prop_list,

PROPERTY_FROM);
add_data_to_list(subscribed_prop_list,

PROPERTY_TO);

subscription_container_t *container=
new_subscription_container();

add_individual_to_subscribe(container,
sms, subscribed_prop_list);

ss_subscribe_container(container, true);

4. Timo drinks, updates the counter, and checks SMS.

while(sms_notify(sms)) {
amount += drink(timo);
ss_update_property(timo,

PROPERTY_NUMBER_OF_DRINKS, amount);
}

Similarly, the KP code for Aino is constructed as follows.
1. Aino searches Timo in the smart space by pattern.

individual_t *wife = new_individual(CLASS_WOMAN);
set_property(wife, PROPERTY_LNAME, "Ericsson");
set_property(wife, PROPERTY_FNAME, "Aino");

individual_t *timo = new_individual(CLASS_MAN);
set_property(timo, PROPERTY_FNAME, "Timo");

set_property(timo, PROPERTY_HAS_WIFE, wife);
. . .

list = ss_get_individuals_by_pattern(timo);

2. Synchronous (parameter “false”) subscription waits for
Timo is starting to drink.

subscription_container_t *container=
new_subscription_container();

add_individual_to_subscribe(container, timo,
properties);

ss_subscribe_container(container, false)

property_t *drinks = get_property(timo,
PROPERTY_DRINKS);

if (drinks==NULL) wait_subscribe(container);

3. Monitoring Timo’s counter and checking the limit.
Synchronous subscription is similar to the above.

/* Subscribing for Timo’s counter */
. . .

while(1) {
amount = get_property(timo,

PROPERTY_NUMBER_OF_DRINKS);
if (amount >= MAX_LITRES_VALUE) {

/* Send SMS to Timo */
break;

}
wait_subscribe(container_counter);

}

4. Create an individual for SMS and insert it to the smart
space. Properties “to” and “from” are required.

individual_t *sms=new_individual(CLASS_SMS);
set_property(sms, PROPERTY_TO,

TIMO_PHONE_NUMBER);
set_property(sms, PROPERTY_FROM,

WIFE_PHONE_NUMBER);
ss_insert_individual(sms);

VII. C ONCLUSION AND FUTURE WORK

The addressed area of high-level ontology library gen-
eration for low-performance devices is very important. The
realization of the ubiquitous computing vision will by defini-
tion include a lot of small devices around us. Allowing these
small devices to easily share information with other devices
and architectures, large or small, will be very important.

In this paper we described SmartSlog—a tool that sup-
ports efficient programming such devices for participating
in smart space applications. The resulting code is compact
due to high-level ontology style, portable due to adhering to
ANSI C and POSIX standards, modest and optimizable to
device capacity due to the design. We believe that SmartSlog
will become an important element of the Smart-M3 platform.

The paper presented our work-in-progress. The future
work includes more optimization depending on the needs
of a concrete KP. For example, ontology metainformation
allows defining what types of embedded devices can use
a certain part of ontology. It leads to implementing vari-
ous ontology manipulations that utilize metainformation on



versioning, namespaces, and other differentiation character-
istics. Another important direction of our future work is
optimization of the SIB↔ KP communication. For example,
a part of triple-based processing can be moved to the SIB
side using SPARQL query language; its support will appear
in Smart-M3 soon.

ACKNOWLEDGMENT

Authors would like to thank Finnish-Russian University
Cooperation in Telecommunications (FRUCT) program for
the provided support and R&D infrastructure. The special
thanks to Nokia university collaboration program for provid-
ing publication grant and all FRUCT experts for commenting
and reviewing the project. We would also like to thank Vesa
Luukkala and Ronald Brown from Nokia Research Center
for providing feedback and guidance during the construction
of the SmartSlog tool.

REFERENCES

[1] I. Oliver, J. Honkola, and J. Ziegler, “Dynamic, localised
space based semantic webs,” inProc. IADIS Int’l Conf.
WWW/Internet 2008. IADIS Press, Oct. 2008, pp. 426–431.

[2] I. Oliver, “Information spaces as a basis for personalising
the semantic web,” inProc. 11th Int’l Conf. Enterprise
Information Systems (ICEIS 2009), vol. SAIC, May 2009,
pp. 179–184.

[3] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, Eds.,
Spinning the semantic web : bringing the World Wide Web to
its full potential. The MIT Press, 2005.

[4] R. Baldoni, M. Contenti, and A. Virgillito, “The evolution
of publish/subscribe communication systems,” inFuture Di-
rections in Distributed Computing, ser. Lecture Notes in
Computer Science, vol. 2584. Springer, 2003, pp. 137–141.

[5] I. Oliver, E. Nuutila, and S. Törmä, “Context gathering
in meetings: Business processes meet the agents and the
semantic web,” inThe 4th Int’l Workshop on Technologies for
Context-Aware Business Process Management (TCoB 2009)
within Proc. Joint Workshop on Advanced Technologies and
Techniques for Enterprise Information Systems. INSTICC
Press, May 2009.

[6] A. Smirnov, A. Kashnevik, N. Shilov, I. Oliver, S. Ba-
landin, and S. Boldyrev, “Anonymous agent coordination in
smart spaces: State-of-the-art,” inProc. 9th Int’l Conf. Smart
Spaces and Next Generation Wired/Wireless Networking
(NEW2AN’09) and 2nd Conf. Smart Spaces (ruSMART’09),
ser. Lecture Notes in Computer Science, vol. 5764. Springer-
Verlag, 2009, pp. 42–51.

[7] K. Främling, I. Oliver, J. Honkola, and J. Nyman, “Smart
spaces for ubiquitously smart buildings,” inProc. 3rd Int’l
Conf. Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2009). IEEE Computer Society,
2009, pp. 295–300.

[8] J. Honkola, H. Laine, R. Brown, and I. Oliver, “Cross-
domain interoperability: A case study,” inProc. 9th Int’l
Conf. Smart Spaces and Next Generation Wired/Wireless
Networking (NEW2AN’09) and 2nd Conf. Smart Spaces (ruS-
MART’09), ser. Lecture Notes in Computer Science, vol.
5764. Springer-Verlag, 2009, pp. 22–31.

[9] S. Balandin, I. Oliver, and S. Boldyrev, “Distributed architec-
ture of a professional social network on top of M3 smart space
solution made in PCs and mobile devices friendly manner,”
in Proc. 3rd Int’l Conf. Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies (UBICOMM 2009). IEEE
Computer Society, 2009, pp. 318–323.

[10] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3
information sharing platform,” inThe 1st Int’l Workshop on
Semantic Interoperability for Smart Spaces (SISS 2010) in
conjunction with IEEE ISCC 2010, Jun. 2010.

[11] “Download Smart-M3 software for free at SourceForge.net,”
Release 0.9.4beta, May 2010. [Online]. Available: http:
//sourceforge.net/projects/smart-m3/

[12] “Download SmartSlog software for free at SourceForge.net,”
Release 0.22, Apr. 2010. [Online]. Available: http://
sourceforge.net/projects/smartslog/

[13] P. Liuha, A. Lappeteläinen, and J.-P. Soininen, “Smart ob-
jects for intelligent applications - first results made open,”
ARTEMIS Magazine, no. 5, pp. 27–29, Oct. 2009.

[14] “RDFAlchemy,” Jul. 2010. [Online]. Available: http://www.
openvest.com/trac/wiki/RDFAlchemy

[15] “Datagraph’s spira at github,” Version 0.0.5, Jun. 2010.
[Online]. Available: http://github.com/datagraph/spira

[16] “Jena – a semantic web framework for java,” Jul. 2010.
[Online]. Available: http://jena.sourceforge.net/

[17] “Download KPI low software for free at SourceForge.net,”
Jun. 2010. [Online]. Available: http://sourceforge.net/projects/
kpilow/

[18] T. Littlefair, “CCCC — C and C++ code counter,” May
2010. [Online]. Available: http://cccc.sourceforge.net/

[19] S. Krivov, R. Williams, and F. Villa, “GrOWL: A tool for vi-
sualization and editing of OWL ontologies,”Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 5,
no. 2, pp. 54–57, 2007.

[20] E. Prud’hommeaux and A. Seaborne, “SPARQL query
language for RDF,” W3C Recommendation, Jan. 2008.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[21] M. Barr and A. Massa,Programming Embedded Systems:
With C and GNU Development Tools. O’Reilly Media, Inc.,
2006.

[22] “The ANSI C standard (C99),” ISO/IEC, Tech. Rep., 1999.

[23] “Standard for information technology — portable operating
system interface (POSIX),” Tech. Rep. 1003.1-2001/Cor 2-
2004, 2004.


